
Tivoli Application Dependency Discovery
Manager
Version 7.3

SDK Developer's Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
163.

Edition notice

This edition applies to version 7, release 3 of IBM® Tivoli® Application Dependency Discovery Manager (product number
5724-N55) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2006, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables... v

About this information... vii
Conventions used in this information center... vii
Terms and definitions...vii

Chapter 1. SDK Developer's Guide... 1
Introducing the Software Developer's Kit... 1

Overview of the Software Developer Kit (SDK)..1
Introducing the Common Data Model..1

Installing and configuring the Software Developer Kit... 2
System requirements... 2
TADDM SDK installation... 2
Configuring the TADDM SDK.. 4
Verifying the SDK installation...5
Using the TADDM SDK as a software component..6
SOAP API installation and configuration... 7
REST API installation and configuration..7

Understanding the Common Data Model.. 7
Naming instances... 11
Class names..13
Dependencies between resources.. 14

Simplified Model.. 15
OpenId generic naming rule attribute.. 17
Extended attributes..19
Extended instances.. 25
Extending sensor discovery scope with Simplified Model.. 28

TADDM API overview...33
Application programming interface overview... 33
XML schema overview..33
JSON format overview..34
Model Query Language overview... 35
Using the Java API... 40
Using the SOAP API..74
Developing applications using the REST API.. 82
Command-line interface API... 101

Developing custom server extensions.. 114
Overview...114
Managing extended attributes...115
Custom server extensions API...115

TADDM database schema and views.. 143
Building block views...143
Details pane views... 150
Custom views... 152
Extended attributes views... 157

TADDM Data Dictionary... 159
TADDM Javadoc information...161

Notices..163
Trademarks..164

 iii

iv

Tables

1. TADDM SDK system requirements... 2

2. Embedded mode directory structure..3

3. Standalone mode directory structure...3

4. Configuration properties... 4

5. Simplified Model features... 15

6. XML document structure...34

7. MQL query elements... 36

8. MQL Operator Precedence..36

9. Change history methods... 46

10. Discovery methods..48

11. Find methods.. 49

12. Management Software System methods... 52

13. MSSObjectLink.. 53

14. Access list methods.. 55

15. Collection methods... 58

16. Model management methods...59

17. Relationship methods... 64

18. Session methods...65

19. Version methods... 67

20. Metadata methods.. 67

21. Presentation methods...68

22. Security methods.. 70

23. Application template methods... 72

 v

24. Session requests...75

25. Discovery requests..76

26. Model and metadata requests..77

27. Find requests...79

28. Change history requests... 81

29. Version requests... 82

30. Extended attributes.. 115

31. Capability functions.. 117

32. Command and process functions...117

33. Common Data Model functions.. 118

34. DNS functions... 118

35. File access functions...119

36. IP and MAC address functions... 119

37. Operating system functions..120

38. Path functions... 120

39. Utility functions...121

40. Version information functions.. 121

41. Deprecated views and their new equivalents.. 146

42. Extended attributes views column types in DB2 and Oracle databases.. 157

vi

About this information

The purpose of this PDF document version is to provide the related topics from the information center in a
printable format.

Conventions used in this information center
In the IBM Tivoli Application Dependency Discovery Manager (TADDM) documentation certain
conventions are used. They are used to refer to the operating system-dependent variables and paths, the
COLLATION_HOME directory, and the location of the collation.properties file, which is referenced
throughout the TADDM documentation, including in the messages.

Operating system-dependent variables and paths

In this information center, the UNIX conventions are used for specifying environment variables and for
directory notation.

When using the Windows command line, replace $variable with %variable% for environment variables,
and replace each forward slash (/) with a backslash (\) in directory paths.

If you are using the bash shell on a Windows system, you can use the UNIX conventions.

COLLATION_HOME directory

TADDM root directory is also referred to as the COLLATION_HOME directory.

On operating systems such as AIX® or Linux®, the default location for installing TADDM is the /opt/IBM/
taddm directory. Therefore, in this case, the $COLLATION_HOME directory is /opt/IBM/taddm/dist.

On Windows operating systems, the default location for installing TADDM is the c:\IBM\taddm directory.
Therefore, in this case, the %COLLATION_HOME% directory is c:\IBM\taddm\dist.

Location of collation.properties file

The collation.properties file contains TADDM server properties and includes comments about each
of the properties. It is located in the $COLLATION_HOME/etc directory.

Terms and definitions
Refer to the following list of terms and definitions to learn about important concepts in the IBM Tivoli
Application Dependency Discovery Manager (TADDM).

access collection
A collection that is used to control the access to configuration items and permissions to modify
configuration items. You can create access collections only when data-level security is enabled.

asynchronous discovery
In TADDM, the running of a discovery script on a target system to discover systems that cannot be
accessed directly by the TADDM server. Because this discovery is performed manually, and separately
from a typical credentialed discovery, it is called "asynchronous".

business application
A collection of components that provides a business functionality that you can use internally,
externally, or with other business applications.

CI
See configuration item.

collection
In TADDM, a group of configuration items.

© Copyright IBM Corp. 2006, 2020 vii

configuration item (CI)
A component of IT infrastructure that is under the control of configuration management and is
therefore subject to formal change control. Each CI in the TADDM database has a persistent object
and change history associated with it. Examples of a CI are an operating system, an L2 interface, and
a database buffer pool size.

credentialed discovery
TADDM sensor scanning that discovers detailed information about the following items:

• Each operating system in the runtime environment. This scanning is also known as Level 2
discovery, and it requires operating system credentials.

• The application infrastructure, deployed software components, physical servers, network devices,
virtual systems, and host data that are used in the runtime environment. This scanning is also
known as Level 3 discovery, and it requires both operating system credentials and application
credentials.

credential-less discovery
TADDM sensor scanning that discovers basic information about the active computer systems in the
runtime environment. This scanning is also known as Level 1 discovery, and it requires no credentials.

Data Management Portal
The TADDM web-based user interface for viewing and manipulating the data in a TADDM database.
This user interface is applicable to a domain server deployment, to a synchronization server
deployment, and to each storage server in a streaming server deployment. The user interface is very
similar in all deployments, although in a synchronization server deployment, it has a few additional
functions for adding and synchronizing domains.

discover worker thread
In TADDM, a thread that runs sensors.

Discovery Management Console
The TADDM client user interface for managing discoveries. This console is also known as the Product
Console. It is applicable to a domain server deployment and to discovery servers in a streaming server
deployment. The function of the console is the same in both of these deployments.

discovery server
A TADDM server that runs sensors in a streaming server deployment but does not have its own
database.

domain
In TADDM, a logical subset of the infrastructure of a company or other organization. Domains can
delineate organizational, functional, or geographical boundaries.

domain server
A TADDM server that runs sensors in a domain server deployment and has its own database.

domain server deployment
A TADDM deployment with one domain server. A domain server deployment can be part of a
synchronization server deployment.

In a domain server deployment, the following TADDM server property must be set to the following
value:

com.collation.cmdbmode=domain

launch in context
The concept of moving seamlessly from one Tivoli product UI to another Tivoli product UI (either in a
different console or in the same console or portal interface) with single sign-on and with the target UI
in position at the proper point for users to continue with their task.

Level 1 discovery
TADDM sensor scanning that discovers basic information about the active computer systems in the
runtime environment. This scanning is also known as credential-less discovery because it requires no
credentials. It uses the Stack Scan sensor and the IBM® Tivoli® Monitoring Scope sensor. Level 1
discovery is very shallow. It collects only the host name, operating system name, IP address, fully

viii About this information

qualified domain name, and Media Access Control (MAC) address of each discovered interface. Also,
the MAC address discovery is limited to Linux on System z® and Windows systems. Level 1 discovery
does not discover subnets. For any discovered IP interfaces that do not belong to an existing subnet
that is discovered during Level 2 or Level 3 discovery, new subnets are created based on the value of
the com.collation.IpNetworkAssignmentAgent.defaultNetmask property in the
collation.properties file.

Level 2 discovery
TADDM sensor scanning that discovers detailed information about each operating system in the
runtime environment. This scanning is also known as credentialed discovery, and it requires operating
system credentials. Level 2 discovery collects application names and the operating system names and
port numbers that are associated with each running application. If an application has established a
TCP/IP connection to another application, this information is collected as a dependency.

Level 3 discovery
TADDM sensor scanning that discovers detailed information about the application infrastructure,
deployed software components, physical servers, network devices, virtual systems, and host data
that are used in the runtime environment. This scanning is also known as credentialed discovery, and
it requires both operating system credentials and application credentials.

multitenancy
In TADDM, the use by a service provider or IT vendor of one TADDM installation to discover multiple
customer environments. Also, the service provider or IT vendor can see the data from all customer
environments, but within each customer environment, only the data that is specific to the respective
customer can be displayed in the user interface or viewed in reports within that customer
environment.

Product Console
See Discovery Management Console.

script-based discovery
In TADDM, the use, in a credentialed discovery, of the same sensor scripts that sensors provide in
support of asynchronous discovery.

SE
See server equivalent.

server equivalent (SE)
A representative unit of IT infrastructure, defined as a computer system (with standard
configurations, operating systems, network interfaces, and storage interfaces) with installed server
software (such as a database, a web server, or an application server). The concept of a server
equivalent also includes the network, storage, and other subsystems that provide services to the
optimal functioning of the server. A server equivalent depends on the operating system:

Operating system Approximate number of CIs

Windows 500

AIX 1000

Linux 1000

HP-UX 500

Network devices 1000

storage server
A TADDM server that processes discovery data that is received from the discovery servers and stores
it in the TADDM database. The primary storage server both coordinates the discovery servers and all
other storage servers and serves as a storage server. All storage servers that are not the primary are
called secondary storage servers.

About this information ix

streaming server deployment
A TADDM deployment with a primary storage server and at least one discovery server. This type of
deployment can also include one or more optional secondary storage servers. The primary storage
server and secondary storage servers share a database. The discovery servers have no database.

In this type of deployment, discovery data flows in parallel from multiple discovery servers to the
TADDM database.

In a streaming server deployment, the following TADDM server property must be set to one of the
following values:

• com.collation.taddm.mode=DiscoveryServer
• com.collation.taddm.mode=StorageServer

For all servers except for the primary storage server, the following properties (for the host name and
port number of the primary storage server) must also be set:

• com.collation.PrimaryStorageServer.host
• com.collation.PrimaryStorageServer.port

If the com.collation.taddm.mode property is set, the com.collation.cmdbmode property must not be
set or must be commented out.

synchronization server
A TADDM server that synchronizes discovery data from all domain servers in the enterprise and has its
own database. This server does not discover data directly.

synchronization server deployment
A TADDM deployment with a synchronization server and two or more domain server deployments,
each of which has its own local database.

In this type of deployment, the synchronization server copies discovery data from multiple domain
servers one domain at a time in a batched synchronization process.

In a synchronization server deployment, the following TADDM server property must be set to the
following value:

com.collation.cmdbmode=enterprise

This type of deployment is obsolete. Therefore, in a new TADDM deployment where more than one
server is needed, use the streaming server deployment. A synchronization server can be converted to
become a primary storage server for a streaming server deployment.

TADDM database
In TADDM, the database where configuration data, dependencies, and change history are stored.

Each TADDM server, except for discovery servers and secondary storage servers, has its own
database. Discovery servers have no database. Storage servers share the database of the primary
storage server.

TADDM server
A generic term that can represent any of the following terms:

• domain server in a domain server deployment
• synchronization server in a synchronization server deployment
• discovery server in a streaming server deployment
• storage server (including the primary storage server) in a streaming server deployment

target system
In the TADDM discovery process, the system to be discovered.

utilization discovery
TADDM sensor scanning that discovers utilization information for the host system. A utilization
discovery requires operating system credentials.

x Application Dependency Discovery Manager: SDK Developer's Guide

Chapter 1. SDK Developer's Guide

Introducing the Software Developer's Kit
This topic introduces the IBM Tivoli Application Dependency Discovery Manager (TADDM) Software
Developer's Kit (SDK) and provides a brief overview of the TADDM Common Data Model.

The SDK Developer's Guide provides accurate visibility into business applications by providing application
maps that highlight the relationship between the application and its supporting infrastructure. The
comprehensive application maps include the infrastructure components that make up the application,
their detailed configurations, and the runtime interrelationships and dependencies.

TADDM stores the topology data internally using a Java™ object hierarchy known as the Common Data
Model (CDM).

Overview of the Software Developer Kit (SDK)
This SDK guide uses the open and scalable architecture of TADDM and provides you with a mechanism to
quickly and efficiently reuse the comprehensive application maps across various application management
solutions.

This SDK guide offers comprehensive access to the TADDM application maps and the discovery process,
with which you can:

• Protect implementation investment by using a market proved, open, and standards-based integration
SDK

• Ensure success of IT management initiatives by cost effectively sharing and reusing TADDM application
maps across management applications

• Improve the accuracy of management solutions by integrating real-time and accurate application maps
• Use TADDM adapters and integrations for efficient deployments

The TADDM SDK provides a set of documented application programming interfaces (API):

• Java API
• Simple Object Access Protocol (SOAP) API
• Representational State Transfer (REST) API
• Command-line interface (CLI) API

These APIs provide comprehensive access to TADDM application maps, including the discovered
applications, their components, configurations, and dependencies. The APIs also offer complete control
of the TADDM discovery process and its life cycle, including the starting, stopping, and managing of
discoveries.

Introducing the Common Data Model
TADDM stores the topology data internally using a Java object hierarchy known as the Common Data
Model.

The Common Data Model (CDM), which is persisted in a relational database, consists of model objects
which represent discovered elements in the enterprise environment. The data model contains discovered
objects of each element type, such as computer systems or applications, with corresponding details
represented as contained objects, such as operating systems or configuration values.

You can access the model using the IBM TADDM API, with all detail data displayed in the Data
Management Portal accessible using this interface. The SDK represents data using an XML format with a
published XML schema. Most contained objects are embedded within the document and objects that are
referenced multiple times are duplicated within the document. The resulting XML document is somewhat
larger than the original data, though easy to search using tools such as XQuery or Xpath.

© Copyright IBM Corp. 2006, 2020 1

Related concepts
“Simplified Model” on page 15
As Common Data Model causes problems, a new Simplified Model for storing data is introduced in TADDM
7.3 version. The only elements that are left from the old model are classes.

Installing and configuring the Software Developer Kit

This topic describes the system requirements for using the IBM Tivoli Application Dependency Discovery
Manager (TADDM) Software Developer's Kit (SDK) and explains how to install and configure SDK.

System requirements
This section describes the system requirements for using the TADDM SDK.

Table 1 on page 2 lists the system elements and describes the respective requirement details.

Table 1. TADDM SDK system requirements

Element Details

Operating system Any operating system that supports the required
Java runtime environment (JRE)

Memory 2GB

Processors 1

Processor speed 1GHz

Disk space 200MB (Including the JVM)

Additional software requirements If you are running the SDK on the same computer
as the TADDM server, use the IBM Java SDK
version 7.0 provided with the TADDM server. The
IBM Java SDK is located in the
$COLLATION_HOME/external directory.

If you are installing the SDK on a different
computer from the TADDM server, the Java SDK
version 7.0 is required.

If the client is not on the same machine as the
server, then the Java SDK levels must match. For
example, do not try to run a client with version 5.0
of the Java SDK with a server running version 7.0.

TADDM SDK installation
This section describes how to install the TADDM SDK software on your computer.

You can use the SDK in either of the following modes:

• Embedded mode: The SDK is installed when TADDM is installed on your system. See the topic on the
embedded mode for more information.

• Standalone mode: Use this mode to install the SDK on standalone systems. See the topic on the
standalone mode for more information.

On multiuser systems, like Linux, and AIX, if more than one person uses the SDK, the log files will collide
on permissions. To avoid this, you can install the SDK in your home directory.

2 Application Dependency Discovery Manager: SDK Developer's Guide

Embedded mode

If the TADDM server is already installed on your computer, the SDK is available as part of the distribution
in the $COLLATION_HOME/sdk directory, as shown in the table below.

Table 2. Embedded mode directory structure

Directory Contents

dist/ TADDM root directory which is also referred to as
the COLLATION_HOME directory.

On operating systems such as AIX or Linux, the
default location for installing TADDM is
the /opt/IBM/taddm directory. Therefore, in this
case, the $COLLATION_HOME directory
is /opt/IBM/taddm/dist.

On Windows operating systems, the default
location for installing TADDM is the c:\IBM
\taddm directory. Therefore, in this case, the
%COLLATION_HOME% directory is c:\IBM\taddm
\dist.

bin/

deploy/

etc/

external/

lib/

log/

dist/sdk/ Contains the TADDM SDK. See the table on the
Standalone mode directory structure for more
information.

.

Standalone mode

To install the TADDM SDK separately, go to the $COLLATION_HOME/sdk directory and extract the
sdk.zip file to any directory on your system. The directory structure of the extracted SDK is shown in the
following table:

Table 3. Standalone mode directory structure

Directory Contents

adaptor Contains TADDM Discovery Library Adapter 1.0.

bin Contains useful shell scripts and batch files

dla Contains IBM Discovery Library IdML Certification
Tool

doc Contains English pdfs and other documentation
files

etc Configuration properties

examples Samples directory

Chapter 1. SDK Developer's Guide 3

Table 3. Standalone mode directory structure (continued)

Directory Contents

lib Server and client runtime libraries

log Runtime logs

schema The XML Schema

Configuring the TADDM SDK
You can configure the TADDM SDK by specifying values for environment variables. You can also optionally
configure the operation of the SDK by specifying values for configuration parameters.

Setting environment variables

Before you begin
You must set environment variables before using the Command Line Interface (CLI) and software
developer kit utilities, or before running the supplied examples.

Procedure

Set the JAVA_HOME environment variable to the directory for the Java runtime environment.

If JAVA_HOME is not set, the script runs the first Java executable file found on the execution path.

Setting configuration properties

The configuration parameters are in the $COLLATION_HOME/sdk/etc/collation.properties file.
Table 4 on page 4 describes the configuration parameters you can specify:

Table 4. Configuration properties

Parameter Details

com.collation.version Version of the API

com.collation.LogFile Location that client side messages are logged in.
The directory must exist. The file is created if it
does not exist. The supplied default is ../log/
api-client.log. If this property is not specified,
logging defaults to stdout.

com.collation.log.level Logging level, from among the following values:

• INFO—Default
• ERROR
• DEBUG

com.collation.log.filesize Log file size. The default value is 20 MB.

com.collation.log.filecount Rollover count. The default value is 3.

4 Application Dependency Discovery Manager: SDK Developer's Guide

Table 4. Configuration properties (continued)

Parameter Details

com.ibm.cdb.service.registry.public.port Default port for the TADDM public services RMI
registry. SDK (API) is one of the public TADDM
services. This value must be the same as the
setting for the TADDM server. The default value is
9433.

If the API connects to multiple TADDM servers, you
must configure all servers to use the same port, or
specify the port when connecting.

com.ibm.cdb.service.ApiServer.port Default port for the TADDM where API server
listens on for non-SSL requests. SDK (API) is one of
the public TADDM services. This value must be the
same as the setting for the TADDM server. The
default value is 9530.

If the API connects to multiple TADDM servers, you
must configure all servers to use the same port, or
specify the port when connecting.

The com.ibm.cdb.service.registry.public.port and
com.ibm.cdb.service.registry.public.port properties settings must match the settings for the
TADDM server. Otherwise the TADDM SDK does not work. This is required for both embedded and
standalone modes.

Verifying the SDK installation

Before you begin
You can verify that you successfully installed and configured the TADDM SDK.

Procedure

To verify successful installation, complete the following steps:
1. Change to the SDK binary directory by running a command similar to the following:

cd $COLLATION_HOME/sdk/bin

Note: Windows users: The instructions for verification on Windows are similar, except api.bat is
used instead of api.sh, and the bin directory is located in %COLLATION_HOME%\sdk\bin.

2. Display the CLI usage by running the following command:

% ./api.sh
3. Display the discovery status by running the following command:.

% ./api.sh -u user -p password -H host discover status

This command queries the current discovery status. If you see a valid status (such as Idle), you have
successfully communicated with the TADDM server and run a command.

4. Start a discovery by running the following command:

% ./api.sh -u user -p password -H host discover start 10.10.10.12

Then check the discovery status to verify that the discovery is running:

% ./api.sh -u user -p password -H host discover status

Chapter 1. SDK Developer's Guide 5

5. Query the defined discovery scopes by running the following command:

% ./api.sh -u user -p password -H host find Scope

The command returns scopes defined in the TADDM server in XML format.
6. Collect all computer systems in the TADDM server by running the following command:

% ./api.sh -u user -p password -H host find ComputerSystem

The command returns all discovered computer systems in XML format.

Using the TADDM SDK as a software component
To integrate the TADDM SDK into an application or into an application server environment, you must set
the compilation and runtime class paths, and set the access control.

Before you begin

The class paths point to the Java library that provides the Java API.

The TADDM SDK distribution also bundles the saxon and xalan libraries for XSLT and XQuery processing.
You can use these libraries, or your own XML processing tools for XSLT and XQuery processing.

Procedure

To integrate the SDK as a component, complete the following steps:
1. Set the following class path at both compilation and runtime:

CLASSPATH=$COLLATION_HOME/sdk/lib/taddm-api-client.jar:
 $COLLATION_HOME/sdk/lib/platform-model.jar

2. Configure the access settings (user ID and password).

To use the Java and CLI API, you must configure the access settings using the Data Management
Portal. You can use the same user ID and password for API access and the Data Management Portal.

What to do next

After upgrading from a previous TADDM release, you might need to update the class path to include the
correct .jar files.

The .jar files in the $COLLATION_HOME/sdk/lib directory are also used by the TADDM server.
Therefore, the SDK file should not be moved after installation. If you need to have the SDK files in a
different location, you can extract them from the sdk.zip file on the product DVD.

Required Java .jar files
The taddm-api-client.jar and platform-model.jar files are required to use the Java API and
must be present in a directory listed on the system CLASSPATH environment variable. These files are
provided in the lib subdirectory of the SDK directory.

The taddm-api-client.jar and platform-model.jar files have replaced all previous TADDM JAR
files as the archives that contain client APIs and model definitions.

If you are using the IBM Tivoli Business Service Manager (TBSM) XML toolkit with the JDBC connection
type, you also need oal-topomgr.jar. You can download this JAR file from the following location:

http://taddm.server.machine.name:taddm.server.web.port/GetTaddmVersion/getVersion/
getoaltopomgrfile

To detect changes to the version of the JAR files on the TADDM server, a client application can use the
following URLs to obtain checksum values for the files:

6 Application Dependency Discovery Manager: SDK Developer's Guide

• taddm-api-client.jar:

http://taddm.server.machine.name:taddm.server.web.port/GetTaddmVersion/getVersion/clientjar

• platform-model.jar:

http://taddm.server.machine.name:taddm.server.web.port/GetTaddmVersion/getVersion/modeljar

• oal-topomgr.jar:

http://taddm.server.machine.name:taddm.server.web.port/GetTaddmVersion/getVersion/
oaltopomgrjar

where taddm.server.machine.name is the fully qualified domain name of the server where TADDM is
running and taddm.server.web.port is the HTTP port defined for TADDM server, whose default value is
9430.

Note: If the TADDM server is started as part of the installation process, the checksum for taddm-api-
client.jar is reported incorrectly as 11111111 afterward. If this happens, restart the server;
subsequent client requests return the correct checksum.

A client can also check the version of the TADDM server by using the following URL:

http://taddm.server.machine.name:taddm.server.web.port/GetTaddmVersion/getVersion/taddmversion

This URL returns the product version (for example, 7.2.1).

SOAP API installation and configuration
The SOAP API is installed with the TADDM SDK. However, you need to complete the procedure described
in this section before using the API.

Procedure

To complete the SOAP API installation and configuration, complete the following steps:
1. Download the Axis package from the Internet.
2. Uncompress the package to the $COLLATION_HOME/sdk/lib directory.
3. Include the JAR files in the Axis package in the CLASSPATH.

REST API installation and configuration
The TADDM REST API does not require any .jar files supplied with TADDM; however, some .jar files might
be required if you want to work with TADDM model objects.

About this task
You can use the TADDM .jar files to access the TADDM model object classes and the ModelObjectFactory
class, which converts model objects to and from XML representations.

Procedure

Include the appropriate .jar files for the Java SDK in a directory on your CLASSPATH environment variable:

• $COLLATION_HOME/sdk/lib/taddm-api-client.jar
• $COLLATION_HOME/sdk/lib/platform-model.jar

Understanding the Common Data Model
The Common Data Model (CDM) is the definitional language used to integrate understanding and the
exchange of data between Tivoli management products concerning resources and components of a
customer's business. The CDM is the model used to communicate details about resource instances with
the IBM Tivoli Application Dependency Discovery Manager (TADDM) database.

Chapter 1. SDK Developer's Guide 7

The CDM is entirely composed of data definitions. These definitions are characteristics that identify
resources, their meanings, and any restrictions on their lengths or values. The content of the CDM is
obtained by the merging of applicable industry information and data model standards and the data
models used by our current products into a single, converged model. It incorporates the following
standards:

• Distributed Management Task Force (DMTF) Common Information Model (CIM) standard
• The following Business Process standards:

– Business Process Execution Language (BPEL),
– IT Infrastructure Library (ITIL) specification
– LDAP directory schema

• The following domain specific standards:

– TeleManagement Forum (TMf),
– Storage Networking Industry Association (SNIA), and more.

The Common Data Model is in use by multiple applications, including TADDM. The applications that use
the CDM are able to share definitions and terminology for resource instance data that is common between
them, enabling the construction of higher-level applications that encompass the overall management
environment and share information between those systems. The CDM describes the input and output
contents of the TADDM API, sensors, utility applications, and Discovery Management Console.

The CDM is different from a schema. A schema, is usually associated with a database, includes both the
organization of data into a logical model and the specification of how that data is stored in specific
columns of specific tables (also known as the physical model of the database). The CDM represents a
logical model composed of definitions that enables consistent identification of resource instances,
information about them, and relationships between them. The data model links business and IT
processes with the systems that provide them, the users that invoke them, the policies that control them,
the resources that processes use, and much more. The CDM classifies and organizes the most commonly
managed characteristics of users, resources, and business IT information and processes and presents
them in a way that all applications can use.

For more details on CDM, see the following information:

• Tivoli Common Data Model Web site in the $COLLATION_HOME/sdk/doc/model directory.
• IBM Tivoli Common Data Model: Guide to Best Practices at http://www.redbooks.ibm.com/abstracts/

redp4389.html.

The Common Data Model has the following characteristics:

• It does not define the physical schema, nor does it define how a management system operates.
• It defines the resources and characteristics of a management environment that the management

system monitors, analyzes, and controls.
• It is also in use when management applications exchange information about resource instances and

their relationships to other resources.
• It standardizes the characteristics, the concepts of classes, attributes, interfaces, naming rules, naming

policies and the data types that are in use.
• It provides consistent definitions of items, best practices for content, and guidelines for mapping

resource instance data to the CDM.

The Common Data Model includes the following objects:
Classes

Have the following characteristics or rules:

• A Class is a construct used to group related attributes.
• Classes are the representation of a resource instance type (for example, an OperatingSystem as a

type of resource instance).

8 Application Dependency Discovery Manager: SDK Developer's Guide

http://www.redbooks.ibm.com/abstracts/redp4389.html
http://www.redbooks.ibm.com/abstracts/redp4389.html

• As the basic structure of the model, classes contain attributes, implement interfaces, and can
optionally be involved in relationships.

• Classes are hierarchical and inherit the properties of parent classes.
• Classes can also explicitly include properties that pertain to a level of detail.
• Instances of classes represent the actual resource instances, the nouns representing the physical or

logical resources in the environment.
• Instances have attributes and can take part in relationships. For example, in a database

management environment, items such as the database server, tables, and connections are
Instances.

Note: Instances also include things that are not limited to being managed but which take part in the
management process, such as users or business systems.

• Out of the various objects in the CDM, Classes are the only ones in use to represent resource
instances. There are particular classes mentioned throughout the TADDM documentation that have
particular meaning:

– ModelObject - This class represents the base or root class in the CDM. All classes derive in some
way from ModelObject. The term ModelObject is used in the documentation to represent any
defined class in the CDM.

– ManagedElement - This is another representation of a base or root class in the CDM, and directly
corresponds to the DMTF Common Information Model representation with the same name. The
term ManagedElement is also used in the documentation to represent any defined class in the
CDM. The ModelObject and ManagedElement classes are used interchangeably.

– ManagementSoftwareSystem - Also known as a MSS, this class represents the management
products that are providing data to TADDM through some mechanism. Each provider of data
(including TADDM's sensors) are represented as a resource instance of the type
ManagementSoftwareSystem.

• The CDM supports specialization through single inheritance, although the use of interfaces gives the
model some aspects of multiple inheritance. All classes are organized into a single-rooted, single
inheritance hierarchy with the ModelObject class as the root. Every class, with exception of
ModelObject, specifies exactly one parent, and the child class inherits all characteristics of the
parent class.

• The CDM additionally includes naming rules for model objects that specify the attributes required to
uniquely name objects in TADDM. See the section on Naming instances for more information about
naming rules for model objects.

• Persistent vs. Non-Persistent classes:

– A persistent class is a class whose instances can be stored in a database, whereas instances of a
non-persistent class cannot be stored in a database.

– When using MQL (Model Query Language), you can only query objects of persistent classes. The
only exception is when you query the attribute, "guid" of a ModelObject (non-persistent class), as
in the following example:

- The attribute, "source", is a ModelObject, and the following queries return the same results:

SELECT * FROM TransactionalDependency WHERE source.guid ==
'E72B13789C9039BFB32E3822FE50C197'

SELECT * FROM TransactionalDependency WHERE source ==
'E72B13789C9039BFB32E3822FE50C197'

– In the model Javadoc (Javadoc for TADDM's CommonDataModel), if the tag, ‘Persistable', is set
to true for a given class, then it is a persistent class. If the tag is not present for a given class,
then it is a non-persistent class.

- Examples of persistent classes: ComputerSystem, SoftwareModule, AppServer
- Examples of non-persistent classes: ModelObject, Database, LogicalElement

Chapter 1. SDK Developer's Guide 9

Attributes
Have the following characteristics or rules:

• An attribute defines a particular property that is valid for a class.
• Each attribute has a particular meaning or semantic in terms of expected content.
• Attributes are specified on CDM classes as well as interfaces.
• Instances of attributes are the adjectives that describe characteristics of instances and serve to

differentiate instances of the same class, such as the different Manufacturer of instances of the
class ComputerSystem.

• When a resource instance is created, there is the ability to store data for any attribute valid for a
resource instance.

• Not all attributes are required to contain a value, however, there are some attributes that are in use
to represent a unique identity for a resource instance. These attributes are often referred to as
identity attributes.

Interfaces
Enable the convenient reuse of a set of attributes and provide increased flexibility in the definition of
relationships. For example, the attribute VersionString is a valid attribute for several different (class)
types of resource instances. Rather than duplicating the attribute across multiple classes in the CDM,
an interface is created to represent the set of attributes that pertain to version data.

Resource instances cannot be based on a interface. Any class that implements a interface
automatically receives the set of attributes and relationships from the interface as if they existed on
the class. Interfaces are hierarchical and can derive their attributes and relationships in the parent
interface from inheritance.

There is a particular interface mentioned throughout the TADDM documentation that has a particular
meaning. This interface is called a Configuration Item. The interface Configuration Item is used to
denote particular classes in the CDM of which instances act as a Configuration Item defined by the
corresponding ITIL term. Certain classes in the CDM, such as financial data, are not defined to be
Configuration Items, as the CDM represents aspects from various environments.

Relationships
Have the following characteristics or rules:

• Associations between two resource instances, showing how resource instances are related to each
other.

• Relationships can only be between classes, and are between classes of the same or different types.
• Each relationship has a particular definition, or type. These different relationship types carry a

certain semantic that pertains to the kind of association between the resource instances.

For example, one of the relationship types in the CDM is manages. which represents the source
instance participates in a controlling role to the target resource instance in the relationship. Another
relationship type is installedOn, which represents the source instance as an object that is installed
on the target resource instance. Both of these relationships can be valid on resource instances
where the source is a instance of the class Agent and the target is a instance of the class
OperatingSystem, however the two relationships have very different meanings. There can be
multiple relationships between the same two classes (and the same two resource instances). Each
relationship forms an association between two instances.

In the CDM each relationship instance has a source and a target, which are the relationship's roles.
The number of instances that can take part in each role is important. Certain relationships only
allow one instance to take part. Others allow any number of instances. The number of instances that
can participate in each role is known as the cardinality of the relationship.

Data Types
The information contained in attributes and measurements must be presented in a well-known
syntax, and for this purpose the CDM defines a set of data types that should be used for representing
entity information.

10 Application Dependency Discovery Manager: SDK Developer's Guide

The data types defined in the model do not specify a physical representation for the data, rather they
specify the lengths of data and sometimes the encoding or best practice for the content of the data.

The model also includes enumerated data types that enable products to understand the common
meaning of certain values

Naming instances
Names (or naming attributes) form the basis for identification of resources and reconciliation between
resource instances that represent the same object in the data center.

Naming is based on the generation, use, and sharing of human-readable attributes for identifying
resource instances. By grouping the content of particular attributes together for a resource instance, a
unique name is created for the resource instance. Given the size of the data model, there are many
potential ways to name a resource instance. In order to organize the method of generating a unique
name, the Common Data Model uses the concept of naming rules to group a set of attributes together that
constitutes a unique identity.

Naming rules
A naming rule is a specification of how to name instances of a particular class, such as resources, people,
and systems.

Naming rules contain a set of attributes that are required in order to name a given resource. The usual
case for a naming rule is to group attributes together in order to form unique identity. If the name of two
instances is the same, the instances are assumed to refer to the same entity. For example, different
entities in a Layer 2 network are commonly identified in the same way, using a MAC address, even though
the entities are instances of different, possibly unrelated classes. MAC addresses, by their structure, form
a space from which all valid names for a station on a Layer-2 network can be assigned.

Note: This is separate from the type of network that is involved, which could be 10-BaseT, 1000-BaseT,
or Token Ring.

There are two special cases where naming rules will contain more than just attributes.

1. Naming Context:

Sometimes in the naming of a resource instance, there is a minimal amount of information available to
uniquely name the instance based on the attributes that are available on the class. In cases such as
these, certain naming rules specify a relationship in addition to a set of attributes, as required for the
naming rule. These relationships place what is known as a Naming Context on the resource instance,
and require a second resource to be in use to contextually identify another resource instance.

For example:

• All that is known about a particular instance of an Operating System is the type of Operating System.
• The attribute representing the type of a Operating System is not unique enough to create a unique

resource instance representing the Operating System.
• In order to use this attribute, the naming rule specifies a required installedOn relationship from the

instance of the Operating System to a instance of a ComputerSystem (there is a implied requirement
to also create a valid instance of a Computer System in order to create the relationship).

2. NOT:

Certain naming rules are in place with a defined set of attributes that are acceptable to uniquely name
a resource instance in a majority of circumstances. However, there are cases in the Common Data
Model where another naming rule is needed to further refine the identity of a resource, using the same
set of attributes in use by another naming rule while adding additional attributes.

Because the method to create a unique instance is based on satisfying naming rules, it is not desirable
to have a naming rule with less specific requirements to generate a identity when more specific
attributes are provided. In order to prevent the less specific naming rule from being used, certain
naming rules use an OmittedIdentifier statement on a attribute. This is also referred to as "NOT" in the
Common Data Model Web site section on naming rules.

Chapter 1. SDK Developer's Guide 11

Note: You can find the Common Data Model Web site in the $COLLATION_HOME/sdk/doc/model
directory.

When this NOT operation is mentioned, the operation shows that the attribute must be null. If any
content exists in the attribute mentioned in the OmmittedIdentifier (NOT) operation, the naming rule is
not used to uniquely identify a resource. For example:

• A naming rule exists on the class Activity called ActivityName.
• This naming rule requires the attribute ActivityName to contain a value.

– The assumption with this particular naming rule is the name of the activity is globally unique
within the customer environment.

• In the circumstances where Activity names are not unique, there is a second naming rule, called
QualifiedActivity.

– This rule requires the attribute ActivityName and an owns relationship from a instance of the
class OrganizationalEntity to the instance of the class Activity

• Because the naming rules use a common attribute, ActivityName, and one naming rule is a further
refinement of another naming rule, only one naming rule should be used to name the instance of
Activity.

• Therefore, the naming rule ActivityName specified the NOT operation on the owns relationship.
This means that the owns relationship must not be populated in order to use the ActivityName
naming rule.

Identification is based on the generation, use, and sharing of a machine-readable, concise, and unique
value for the purpose of processing identification. Resource instances that are represented by the
Common Data Model have both names and identifiers:

• The names are longer, mainly alphabetic strings that people use to refer to the entities.
• Identifiers are shorter, dense, mainly numeric values that the management system uses to uniquely

identify the entities.

TADDM Globally Unique Identifiers
Identification values are commonly referred to as globally unique identifiers (GUIDs). The TADDM GUIDs
are built according to UUID version 3 specification (IETF Standards Track RFC 4122), and are used as
identifiers of configuration items (CIs).

Version 3 GUIDs are generated by processing a string with an MD5–type cryptographic algorithm. TADDM
passes a string that is constructed from the values of the attributes that are used in the naming rules to
the GUID generation component. Most CIs have multiple naming rules and can therefore generate
multiple GUIDs. The attribute values that are available when the CI is created determine which GUIDs are
generated. Generally, the first GUID that is generated for an object is considered the master GUID or
primary identifier for that object. Other generated GUIDs are aliases of the master GUID.

If the CIs are discovered with the same attributes and values, they always have the same set of GUIDs.
However, the first GUID, which later becomes a master GUID, is generated randomly. That is why a
particular CI might not have the same master GUID on different TADDM installations. Likewise, it might
not be chosen again when the item is deleted or the database is re-created. The same types of CIs, such
as ComputerSystems, might also use GUIDs that are calculated from a different naming rule than their
master GUIDs.

Generally, TADDM application programming interfaces (APIs) identify CIs by their master GUIDs, but they
can also identify them by their aliases. That is why, if you want to find a particular CI, you can search for it
by using its alias GUID.

GUID erosion

GUIDs that are aliases of a master GUID might erode during the lifecycle of a configuration item. Erosion
happens when an attribute that defines a single naming rule, such as a signature, changes. After this
change, a new set of GUIDs is generated, and replaces the old values. If the attributes of a master GUID
change, this GUID remains the same and a new alias is added.

12 Application Dependency Discovery Manager: SDK Developer's Guide

Master GUID changes
A master GUID of a particular configuration item can change due to any of the following conditions:
Deletion of a configuration item, and rediscovery

When a configuration item is deleted from the TADDM database, a different GUID might be chosen as
a master GUID during the next store of this CI.

Configuration items merge scenario
When new data is available in TADDM, two different CIs might be identified as the same instance. A
user can also start the merge manually. In this scenario, the attributes of a transient and a durable CI
can merge. As a result, the master GUID of a transient CI becomes a new alias of the durable one, and
the master GUID of the durable CI represents a CI that was created after the merge.

TADDM upgrade
When you upgrade to a new version of TADDM, the attributes that are part of naming rules might
change. This situation might also affect the data migration process that is supposed to ensure that
master GUIDs remain the same after the upgrade. A new version of sensors or Discovery Library
Adapters might also change the way the attribute values are stored.

Class names
The TADDM Common Data Model class object names can be referenced by either their long name or their
short name. Most object names can be referenced by their short name.

For a computer system, the short name is ComputerSystem and the long name is
com.collation.platform.model.topology.sys.ComputerSystem.

The exception to the usage of short names is in the case of duplicates. For example, SSLSettings must be
referenced by its long name because there are 2 instances of SSLSettings:

• com.collation.platform.model.topology.app.lotus.SSLSettings
• com.collation.platform.model.topology.app.SSLSettings.

The following code sample displays all the short and long names for classes in the Common Data Model.
Once you run this command, the duplicate class names which must be referenced by their long name are
listed at the end of the results.

DisplayClassNames sample
import com.collation.proxy.api.client.*;
import com.collation.proxy.api.util.*;
import com.ibm.cdb.api.ApiFactory;
import java.util.*;

class DisplayClassNames {

 public static void main(String[] args) {
 CMDBApi api = null;

 try {
 System.out.println("--- Displaying Model Object Names ----");

 ApiConnection conn = ApiFactory.getInstance().
 getApiConnection("localhost", -1, null, false);
 ApiSession sess1 = ApiFactory.getInstance().getSession(conn,
 "administrator",
 "collation", ApiSession.DEFAULT_VERSION);
 api = sess1.createCMDBApi();

 String[] classNameArray = api.getClassNames();

 ArrayList shortNames = new ArrayList(classNameArray.length);
 ArrayList dups = new ArrayList(10);
 for (int i = 0; i < classNameArray.length; i++) {
 // print the short and long class names
 System.out.println ("\nShort Name = " + classNameArray[i]);
 System.out.println ("Long Name = " + classNameArray[i+1]);
 // See if short name is a dup
 if (shortNames.contains(classNameArray[i])) {
 dups.add(classNameArray[i]);
 } else {
 shortNames.add(classNameArray[i]);
 }

Chapter 1. SDK Developer's Guide 13

 i++;
 }
 System.out.println("\nThe following classes must be specified using
 the long name: ");
 System.out.println(dups);
 sess1.close();
 } catch(Exception ex) {
 ex.printStackTrace();
 } finally {
 if (api != null) {
 try {
 api.close();
 } catch (Exception e) { }
 }
 }

 }

}

Dependencies between resources
TADDM discovers and categorizes several types of cross-tier dependencies, these dependencies are
reflected in the CDM. Dependencies model the runtime relationships among the various components
within the CDM.

There are several types of dependencies, including:

• Transactional dependencies

Transactional dependencies occur between application components, such as web servers, application
servers, and databases. The dependent component issues requests to the provider component in order
to perform certain functions. For example, a Java Database Connectivity (JDBC) connection from a Java
2 Platform, Enterprise Edition (Java EE) server to a database is a transactional dependency. In this case,
the provider is often called a server and the dependent called a consumer or client.

• Service dependencies

Service dependencies occur between application components and infrastructure services, such as
Domain Name System (DNS), Lightweight Directory Access Protocol (LDAP), and Network File System
(NFS). The provider is the infrastructure service, and the dependent component requests system
services from the provider. For example, a request to map a DNS name to an IP address.

• IP dependencies

IP dependencies occur between two computer systems or between an application server and a
computer system. TADDM creates this type of relationship when it discovers a relationship between two
computer systems but cannot discover exactly which application server is involved.

• System dependencies

System dependencies occur between an application server and its host computer system.
• Application to application dependencies

Application to application dependencies occur from one business application to another business
application.

Example of dependencies

When transaction dependencies are created for two application servers, then IP dependencies are not
created between them. Neither are IP dependencies created between the application server and their
hosts. However, there can exist another logical connection for example between two processes and
based on these connections IP dependencies can be created between computer systems. For example,
consider the following scenario:

• Computer system (CS1) hosts an application server (AP1) and process (P1)
• Computer system (CS2) hosts an application server (AP2) and process (P2)

There are two logical connections created by TADDM: AP1 <-> AP2 and P1<->P2

14 Application Dependency Discovery Manager: SDK Developer's Guide

In this scenario, a transactional dependence is created between AP1 and AP2 (based on the logical
connection AP1 <-> AP2). An IP dependency is created between CS1 and CS2 (based on the logical
connection between P1<->P2).

Simplified Model
As Common Data Model causes problems, a new Simplified Model for storing data is introduced in TADDM
7.3 version. The only elements that are left from the old model are classes.

With the new Simplified Model, you can create script-based, custom sensors more easily and extend the
scope of discovery. You can customize new sensors and edit the existing ones.

Note: Simplified Model is not supported for other products that you integrate with TADDM.

The following table lists the most important features introduced with Simplified Model and provides the
location where you can find more information about them.

Table 5. Simplified Model features

Feature Location

Top-level generic classes in the hierarchy that represent
crucial CIs.

“Package, classes, and hierarchies” on page
15

New middle-level objects that represent deployable
components.

“Package, classes, and hierarchies” on page
15

A mechanism to extend new top levels with the unlimited
number of attributes (extended attributes).

“Extended attributes” on page 19

A mechanism to store entire chunks of raw data (for
example XMLs, or command outputs) and attach them to
the top-level CIs (extended instances).

“Extended instances” on page 25

New eval operator used in MQL queries for extended
attributes and extended instances.

“Model Query Language overview” on page
35

New generic naming rule attribute openId. “OpenId generic naming rule attribute” on
page 17

Package, classes, and hierarchies

Package and classes
All new classes are stored in the com.collation.platform.model.topology.simple package.
The classes names start with the capital letter "S" to avoid conflicts because TADDM differentiates
data types by their short names.

Hierarchy attributes
Each data model object contains two hierarchy attributes, hierarchyDomain and hierarchyType,
which define information that in the old model was present in the package and type of every class. For
example, the ComputerSystem type contained many specific computer systems that represented
different operating systems like sys.linux.LinuxUnitaryComputerSystem or
sys.windows.WindowsComputerSystem. These objects had to be stored separately. The new
simplified model allows for storing objects of both types as the SComputerSystem type, when these
two attributes are set in the following way:

• For sys.linux.LinuxUnitaryComputerSystem:

hierarchyDomain="sys.unix.linux"
hierarchyType="RedHat"

Chapter 1. SDK Developer's Guide 15

• For sys.windows.WindowsComputerSystem:

hierarchyDomain="sys.windows"
hierarchyType="Windows7"

The hierarchyDomain attribute values specify levels of domain, beginning with the most general
level and finishing with the most specific one. For example, in the "app.db.mongodb" value, app is
an application server, db is a database server, and mongodb is a specific database, in this case
MongoDB.
The hierarchy attributes are used to fully handle UI. They are also used in querying.

New hierarchy types
The following list shows new hierarchy types:

• SComputerSystem - replaces the ComputerSystem hierarchy.
• SSoftwareServer - replaces the AppServer hierarchy.
• SLogicalGroup - replaces the AppServerCluster hierarchy and represents any kind of

collections that are stored by a sensor, for example, clusters, or domains.
• SFunction - replaces the Function hierarchy and represents additional rules and functions.
• SSoftwareInstallation - represents a physical software packages that are present on a

computer system that constitutes a software server (vendor created libraries).
• SPysicalFile - replaces AppConfig and LogicalContent hierarchies and represents a
configuration file. The whole content of this file is captured by a discovery.

• SDeployableComponent - a new type that represents types that are considered as relationship
sources or targets, which are deployed on computer systems, software servers, or logical groups.
They are middle-level objects. Some of the old CDM types are still attached to
SDeployableComponent hierarchy to ensure compatibility with earlier versions. The following list
specifies such types:

– BiztalkApplication
– Database
– DominoDatabase
– ExchangeLink, ExchangeStorageGroup
– FileSystem
– IIsWebServer, IIsWebVirtualDir
– MBExecutionGroup, MBMessageFlow, MessageBox
– MQChannel, MQQueue
– OracleSchema
– SharePointWebApplication
– SoftwareModule - the only component of the SoftwareModule type that is left is
J2EEApplication as it is the only deployable component in this type.

– WebVirtualHost

All these new types inherit from the following abstract types that are introduced into data model for
modeling purposes: SStandaloneObject, SContextualObject, SGroup.

lastStoreTime attribute
The lastModifiedTime attribute is deprecated because it has a misleading name. A new
lastStoreTime attribute replaces it.

Migration

The migration from the old model to the new one is automatic. You do not need to complete any
additional tasks. The MQL queries and SQL views are compatible with earlier version.

16 Application Dependency Discovery Manager: SDK Developer's Guide

Changes in Data Management Portal

In the Inventory Summary pane on the Inventory tab, there is a new component type called Generics.
You can find there objects of classes from the simple package. You can also browse generic folders in
the Discovered Components pane and display details for discovered objects of new class types. For
information about displaying extended attributes and extended instances, see “Extended attributes” on
page 19 and “Extended instances” on page 25.

Business applications

The Simplified Model is supported by business application engine. You can use new classes, attributes,
and the eval operator in queries while working with business applications. You can also create business
application from the objects that you store by using the new model.

OpenId generic naming rule attribute
For each object, you must specify attributes, and define a naming rule that indicates which of these
attributes provide a unique value. The naming rules vary depending on the hierarchy type. The new
generic types that are stored in the simple package, are stored with the use of the same naming rules as
in the old CDM. Objects that inherit from the SStandaloneObject type are stored with the openId
attribute. Objects that inherit from the SContextualObject type are stored with the context and
scopedId attributes.

Both openId and scopedId attributes are of the string type in a database, but on the API level they are
of a new Java type OpenId. As a result, those attributes have a specific format, aligned with the OpenId
schema. The OpenId type contains methods to easily construct any meaningful string that represents a
value of a naming rule. The values that are specified in the openId attribute are the source for GUID
calculation.

Examples
Example 1

For servers, naming rule is usually based on two attributes. They are the primary service access point
that is created from the server's primary IP address, and a port, on which this service listens on. The
openId attribute is specified in the following way:

id = OpenId().addId('IP' , seed.getPrimaryIpAddress().getStringNotation())
.addId('port' , str(seed.getPort()))

Example 2
In Common Data Model, the old ComputerSystem type has a naming rule based on the
manufacturer, model, and serialNumber attributes. These three attributes are defined in the
class explicitly and when values are set for them, a ComputerSystem object can be stored.

LinuxUnitaryComputerSystem cs = ModelFactory.newInstance
(LinuxUnitaryComputerSystem.class);
cs.setManufacturer("RedHat");
cs.setModel("Linux");
cs.setSerialNumber("as00123012");

Then an object with the following attribute map is stored in the persistence layer :

manufacturer -> RedHat
serialNumber -> as00123012
isPlaceholder -> false
model -> Linux

In the new Simplified Model, storing objects of the simplified SComputerSystem type with the same
values looks the same. However, if there is another naming rule attribute available for the particular
computer system, for example an id that a cluster assigns to every physical computer system that it
manages, and such naming rule attribute is not defined in the model, it can be extended with the use

Chapter 1. SDK Developer's Guide 17

of the OpenId type. When the attribute is extended, it is not only stored but it also uniquely
represents the computer system. The OpenId type is used in the following way:

SComputerSystem scs = ModelFactory.newInstance(SComputerSystem.class);
scs.setHierarchyDomain("sys.unix.linux");
scs.setHierarchyType("RedHat");
scs.setManufacturer("RedHat");
scs.setModel("Linux");
scs.setSerialNumber("as00123012");
OpenId id = new OpenId();
id.addId("clusterInternalId", "66");
scs.setOpenId(id);

Example 3
The OpenId type can also be set in the following way:

scs.setOpenId(new OpenId().addId("clusterInternalId", "66"));

The following attribute map is stored:

manufacturer -> RedHat
serialNumber -> as00123012
model -> LinuxhierarchyType -> RedHat
isPlaceholder -> false
hierarchyDomain -> sys.unix.linux
openId -> <openId><id><name>clusterinternalid</name><value>66</value></id>
</openId>

Example 4
Adding a function to this simplified computer system is very similar. The following example shows
how to create the OpenId attribute from values that are already set for the simplified class attributes:

SFunction sf = ModelFactory.newInstance(SFunction.class);
sf.setName("Cisco Firewall");
sf.setHierarchyDomain("function.net.firewall");
sf.setHierarchyType("Cisco");

OpenId fid = new OpenId(sf);
fid.addId("name", null);
fid.addId("type", "firewall");
sf.setScopedId(fid);
sf.setProvider(scs);

The following attribute map is stored:

hierarchyType -> Cisco
isPlaceholder -> false
provider -> {hierarchyType=RedHat;hierarchyDomain=sys.unix.linux;
isPlaceholder=false;openId=<openId><id><name>clusterinternalid</name>
<value>66</value></id></openId>;}
hierarchyDomain -> function.net.firewall
name -> Cisco Firewall
scopedId -> <openId><id><name>name</name><value>Cisco Firewall</value>
</id><id><name>type</name><value>firewall</value></id>
</openId>

Example 5
To easily create one simple id without any distinction for particular attributes inside, set the attribute
in the following way:

OpenId fid = new OpenId(sf);
sf.setProvider(scs);
sf.setScopedId(new OpenId().addId("id19921"));

The following attribute map is stored:

hierarchyType -> Cisco
isPlaceholder -> false
provider -> {hierarchyType=RedHat;hierarchyDomain=sys.unix.linux;
isPlaceholder=false;openId=<openId><id><name>clusterinternalid</name>
<value>66</value></id></openId>;}
hierarchyDomain -> function.net.firewall

18 Application Dependency Discovery Manager: SDK Developer's Guide

name -> Cisco Firewall
scopedId -> <openId><id><name>id</name><value>id19921</value></id></openId>

Related concepts
“Extended attributes” on page 19
In the old Common Data Model, extended attributes were used to manually define up to 100 attributes
per CDM type to store the data. They were used to extend CDM types with attributes out of domain, for
example server room number, and to expand the scope of the discovery of CIs. In the new Simplified
Model, extended attributes are used to store all simple attributes of CDM classes that were previously
present in the types lower in hierarchy.

Extended attributes
In the old Common Data Model, extended attributes were used to manually define up to 100 attributes
per CDM type to store the data. They were used to extend CDM types with attributes out of domain, for
example server room number, and to expand the scope of the discovery of CIs. In the new Simplified
Model, extended attributes are used to store all simple attributes of CDM classes that were previously
present in the types lower in hierarchy.

For example, in the old model, the ExchangeServer type had the productID attribute of the string type
defined. In the new model, the ExchangeServer type is stored in the following way:

SSoftwareServer sr = ModelFactory.newInstance(SSoftwareServer.class);
sr.setHierarchyDomain("app.messaging.exchange");
sr.setHierarchyType("Exchange");
sr.setOpenId(new OpenId().addId("serverName", "Exchange1122"));

The productID attribute cannot be stored because the SSoftwareServer type stores only essential
attributes and cannot be extended. The extended attributes allow for storing such specific attributes.

Data model type

The following changes are introduced in the new data model:

• Extended attributes are stored along with the CIs in the XA attribute of a new custom type
ExtendedAttributesData. The data that is kept in separate objects of the UserData type is
migrated into the XA attribute.

• The limitation to store up to 100 attributes per CDM type was removed. The number of attributes that
can be stored into a single object depends on the capacity of the database XML column type. Also, the -
g option of the bulk load program can be used to store extended attributes.

• Extended attributes have categories. If no category is selected, an attribute is stored in the default
General category. All extended attributes present in the old data model were moved into the default
General category.

• Old attribute byte[] extendedAttributes is kept only to ensure compatibility with earlier versions
and is deprecated. Public API methods setExtendedAttributes and getExtendedAttributes
are deprecated as well.

Viewing extended attributes

After you run a discovery of a sensor, for which you specified the XA attribute, you can view extended
attributes in Data Management Portal. Open the Details pane of a discovered object. There is no longer
Extended Attributes tab, the information about extended attributes of the default category is displayed
on the General tab. The extended attributes of a custom category are displayed on a custom tab. For
example, extended attributes of Markers category are displayed on the Markers tab.

Chapter 1. SDK Developer's Guide 19

Example of usage in a sensor

The following example shows the ExtendedAttributesData type that is used to store extended
attribute or attributes with a CI. The productID attribute is kept in a default category. A new category for
physical location of a software server is created.

 SSoftwareServer sr = ModelFactory.newInstance(SSoftwareServer.class);
 sr.setHierarchyDomain("app.messaging.exchange");
 sr.setHierarchyType("Exchange");
 sr.setOpenId(new OpenId().addId("serverName", "Exchange1122"));

 ExtendedAttributesData xa = new ExtendedAttributesData();
 xa.addAttribute("productID", "ID12021");
 xa.addAttribute("Location", "buildingNo", "North23");
 xa.addAttribute("Location", "floorNo", "3");
 xa.addAttribute("Location", "roomNo", "15");
 xa.attachTo(sr);

Notes:

• In TADDM 7.3.0, and 7.3.0.1, you can use two methods to store extended attributes. One of them is
attachTo, and it is used in the preceding example. This method must be specified after all
addAttribute() entries. The alternative way is to use the setXA method, for example:

 xa.addAttribute("Location", "roomNo", "15");
 xa.toXML();
 sr.setXA(xa);

If you use the setXA method, you must also specify the toXML method to convert extended attributes
into a layout that can be stored.

• In TADDM 7.3.0.2, there is no difference between the attachTo, and the setXA methods.
Neither of them requires using the toXML method.

The following attribute map is stored:

hierarchyType -> Exchange
isPlaceholder -> false
openId -> <openId><id><name>servername</name><value>Exchange1122</value>
</id></openId>
hierarchyDomain -> app.messaging.exchange
XA -> <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xml>
 <attribute name="productID" category="taddm_global">ID12021</attribute>
 <attribute name="buildingNo" category="Location">North23</attribute>
 <attribute name="floorNo" category="Location">3</attribute>
 <attribute name="roomNo" category="Location">15</attribute>
</xml>

Partial update

A CI can be stored with the same naming rules values from different data sources, and as a result the
values are merged into one object. To prevent that, partial update mechanism is used to merge two
different XML-formatted XA attributes. For example, if one source is stored with object 1, and another
source is stored with object 2, a CI that holds the merged attribute is created.
Object 1

SSoftwareServer sr = ModelFactory.newInstance(SSoftwareServer.class);
sr.setHierarchyDomain("app.messaging.exchange");
sr.setHierarchyType("Exchange");
sr.setOpenId(new OpenId().addId("serverName", "Exchange1122"));

ExtendedAttributesData xa = new ExtendedAttributesData();
xa.addAttribute("productID", "ID12021");
xa.addAttribute("internal", "ID1233");
xa.addAttribute("Location", "buildingNo", "North23");
xa.attachTo(sr);

20 Application Dependency Discovery Manager: SDK Developer's Guide

Object 2

SSoftwareServer sr = ModelFactory.newInstance(SSoftwareServer.class);
sr.setHierarchyDomain("app.messaging.exchange");
sr.setHierarchyType("Exchange");
sr.setOpenId(new OpenId().addId("serverName", "Exchange1122"));

ExtendedAttributesData xa = new ExtendedAttributesData();
xa.addAttribute("productID", "ID12024");
xa.addAttribute("customID", "ID12333");
xa.addAttribute("Location", "floorNo", "3");
xa.addAttribute("Location", "roomNo", "15");
xa.attachTo(sr);

Merged attribute

hierarchyType -> Exchange
isPlaceholder -> false
openId -> <openId><id><name>servername</name><value>Exchange1122</value>
</id></openId>
hierarchyDomain -> app.messaging.exchange
XA -> <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xml>
 <attribute name="customID" category="taddm_global">ID12333</attribute>
 <attribute name="internal" category="taddm_global">ID1233</attribute>
 <attribute name="productID" category="taddm_global">ID12024</attribute>
 <attribute name="buildingNo" category="Location">North23</attribute>
 <attribute name="floorNo" category="Location">3</attribute>
 <attribute name="roomNo" category="Location">15</attribute>
</xml>

All not overlapping attributes from the first object and the second object are present with their values in
the merged attribute and the productId attribute has a value from the object that was stored as last.
When the XA attribute of any model object is partially updated, both category type and attribute name are
included in the process.

Cache for metadata and validation

Extended attributes are defined rarely. Therefore, a cache is created to keep the data. Every time a model
object is placed in a persistence tool to be stored, the tool validates the XA attribute against meta
definitions that are taken from this cache. Every category type and attribute name pair that is present in
the XA attribute, but not defined in the meta cache is removed from the XA attribute before the model
object is persisted. When the cache refresh process is disabled, meta information is taken from the
persistence layer. When the process is enabled, the meta information is taken from Java memory.

You can control the frequency of the cache refresh process by using the
com.ibm.cdb.ea.metaRefreshFrequency property in the collation.properties file. The default
value is 20 and is expressed in seconds. If you want to disable the cache refresh process, set the value of
this property to 0.

Note: When you are defining extended attributes, disable the cache refresh process and enable it when
you finish.

MQL queries with EVAL operator (XA and XD attributes only)

Many CDM attributes are moved into XML content of the XA or XD attributes. Therefore, MQL syntax
supports a new operator eval, which can be added in the where clause. The eval operator enables
querying CIs by the values of extended attributes or extended instances.

Note: All MQL queries examples contain escaped quotation marks (\"value\") because it is assumed
that the queries are run in the following manner:

./api.sh -u username -p password find "MQL query"

For example, the following query was run to find a computer system with the productID attribute set to
'prod1':

SELECT * FROM ComputerSystem WHERE productID == 'prod1'

Chapter 1. SDK Developer's Guide 21

The following equivalent query uses the eval operator:

SELECT * FROM ComputerSystem WHERE XA eval '/xml
[attribute[@category=\"taddm_global\" and @name=\"productID\"]=\"prod1\"]'

The eval operator can be followed by any valid XPath expression that returns Boolean true or false value
to enable the performance of correct SQL filtering by the persistence layer.
More examples

• Find all ComputerSystems, which have any extended attribute with the val value:

– MQL:

SELECT * FROM ComputerSystem WHERE XA eval '/xml[attribute=\"val\"]'

– SQL:

SELECT * FROM compsys WHERE xmlexists('$c/xml[attribute="val1"]'
passing compsys.xa_x as "c")

• Find a ComputerSystem with the attr2 extended attribute, which has the category set to Other
and value set to two:

– MQL:

SELECT * FROM ComputerSystem WHERE XA eval '/xml/attribute
[@name=\"attr2\" and @category=\"Other\" and text()=\"two\"]'

– SQL:

SELECT * FROM compsys WHERE xmlexists('$c/xml/attribute[@name="attr2"
 and and @category="Other" and text()="two"]' passing compsys.xa_x as
 "c")

Creating extended attributes in Domain Management Portal
You can define extended attributes for a particular component in Domain Management Portal.

Procedure

To create an extended attribute, complete the following steps in Domain Management Portal.

Note: You can also define extended attributes by running the bulk load program.
1. On the menu bar, click Edit > Extended Attributes.

The Define Extended Attributes window is displayed.
2. From the Component type menu, select the type of component, for which you want to create an

extended attribute.
3. Click New.

The Create New Extended Attribute window is displayed.
4. In the Extended attribute name field, type the name of the extended attribute.
5. From the Extended attribute type menu, select the type of extended attribute you want to create.
6. From the Extended attribute category menu, specify the category for your extended attribute.
7. Click OK.
8. In the Define Extended Attributes window, click OK.

See also the Define Extended Attributes window topic in the TADDM User's Guide.

22 Application Dependency Discovery Manager: SDK Developer's Guide

Creating extended attributes in the files
You can define extended attributes for a particular component in the files in the $COLLATION_HOME/
dist/etc/templates directory.

Procedure

1. Make sure that the template files in the $COLLATION_HOME/dist/etc/templates/commands
directory contain only SCRIPT:etc/templates/commands/extension-scripts/
ea_sensor_1.0.py.

2. On the server that you want to discover, create a configuration file /tmp/file_name.conf that
contains pairs of attributes that you want to define, and their values.
For example:

FirstAttribute = First value
SecondAttribute = Second value

List these attributes in the extended_attributes.properties file. See the next step.
3. In the $COLLATION_HOME/etc/templates directory, create the
extended_attributes.properties file. It must contain the attributes that you want to collect. In
the extended_attributes.properties.example file, you can find the structure of this file.
An example entry:

Linux.FileGEN.1.Key="/tmp/attribute.conf"
Linux.FileGEN.1.Attributes="myAttribute"

where:

• /tmp/attribute.conf is the location of the file, where you specify the attribute that you want to
define (/tmp/file_name.conf).

• myAttribute is the name of the attribute that you want to define, which is specified in the /tmp/
attribute.conf file.

4. In the Discovery Management Console, in the Computer Systems window, set the Enable value to
true.

What to do next

Before you run a discovery, all the attributes that you want to collect must also be created in Domain
Management Portal. If they are not, they are skipped during the discovery.

Important: During the discovery, the names of the attributes that you define in the files are changed. The
FileGEN prefix is added to the beginning of each name. For example, if the name of your attribute is
myAttribute, it is changed into FileGEN_myAttribute. Therefore, when you create attributes in
Domain Management Portal, you must provide names with the prefix FileGEN. The attributes that are
created in the files and in Domain Management Portal must have the same names. When you provide
names without the prefix, the attributes are ignored.

Deleting extended attributes
You can remove existing extended attributes.

Procedure

To delete an extended attribute, complete the following steps in the Domain Management Portal:
1. On the menu bar, click Edit > Extended Attributes.

The Define Extended Attributes window is displayed.
2. From the Component type menu, select the type of component, for which you want to delete an

extended attribute.
3. Select an existing extended attribute.
4. Click Delete.

Chapter 1. SDK Developer's Guide 23

5. Click OK.
The extended attribute is deleted.

Auto-defining extended attributes for public Java API and bulk load program
As defining extended attributes manually is time-consuming, you can enable automatic defining of
extended attributes. You can work with extended attributes in Data Management Portal only to correct
and tune extended attributes definitions.

External Java API and bulk load program enable TADDM storage manager to check whether any extended
attributes attached to a CI can be found. If such attributes are found, those that were not defined as the
String type can be automatically defined. With this mechanism, it is best to use the book or a Jython
script to store the data along with the forced auto-definition, and then go to Data Management Portal to
check the definitions, and adjust the attributes types and categories.

To enable automatic defining of extended attributes with the use of external Java API, use the
ApiSession object's setAutoDefineEAs method, which is set to true, as in the following example:

conn = ApiFactory.getInstance().getApiConnection("localhost", -1, None,
Boolean(0))
sess = ApiFactory.getInstance().getSession(conn, "administrator", "collation",
ApiSession.DEFAULT_VERSION)
api = sess.createCMDBApi()

 print "Turning on auto-defining API feature for Extended Attributes"
sess.setAutoDefineEAs(Boolean(1))

To enable automatic defining of extended attributes with the use of the bulk load program, use the -
loadEAMeta attribute, or set the com.ibm.cdb.bulk.loadeametaflag=true property in the
collation.properties file. In this mode, the bulk load program does not store any CIs. Instead, it
extracts the information about all extended attributes that are loaded and uses these extended attributes
to create correct definitions. As a result, correct UserDataMeta objects are created in TADDM.

Note: You can use the -g option when running the bulk load program, which shortens the loading
process.

Auto-defining extended attributes for sensors
You can define extended attributes for any sensor and use them to store the sensor data automatically.

To define extended attributes for sensors, create an IdML book with extended attributes definitions. The
name of this book must be xa.xml. Place the file in the particular OSGi bundle directory, for example
$COLLATION_HOME/osgi/plugins/
com.ibm.cdb.discover.sensor.sys.examplesensor_1.0.0/xa.xml.

Each time the TopologyBuilder service is started, new and changed books are automatically loaded.
During the loading process, the bulk load program is run with the -loadEAMeta option enabled,
automatically defining extended attributes. For details about the bulk load program, see “Auto-defining
extended attributes for public Java API and bulk load program” on page 24.

To view the extended attributes in the TADDM UI, you must restart the TADDM server.

If you want to configure the bulk loading process of books that contain extended attributes, you can use
the $COLLATION_HOME/etc/bulkload.properties file, which stores bulk load program
configuration.

Example of usage
The com.ibm.cdb.discover.sensor.sys.foobarsensor_1.0.0/xa.xml file contains
extended attributes definitions that are used by the example FoobarSensor. During the first server
start, after the TopologyBuilder service is initialized, TADDM loads the
com.ibm.cdb.discover.sensor.sys.foobarsensor_1.0.0/xa.xml book. Then, CRC32 sum
of the xa.xml file is calculated and stored in the
com.ibm.cdb.discover.sensor.sys.foobarsensor_1.0.0/xa.xml.crc file. The CRC32
sum is calculated each time the xa.xml file is changed. The books are loaded by the TopologyBuilder
service only when the check sum changes.

24 Application Dependency Discovery Manager: SDK Developer's Guide

Example structure of the xa.xml file

<idml:idml xmlns:idml="http://www.ibm.com/xmlns/swg/idml" xmlns:cdm=
"http://www.ibm.com/xmlns/swg/cdm" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/swg/idml idml.xsd">
 <idml:source IdMLSchemaVersion="0.8">
 <cdm:process.ManagementSoftwareSystem CDMSchemaVersion="2.8">
 <cdm:MSSName>your data</cdm:MSSName>
 <cdm:Hostname>your data</cdm:Hostname>
 <cdm:ManufacturerName>your data</cdm:ManufacturerName>
 <cdm:ProductName>your data</cdm:ProductName>
 <cdm:ProductVersion>your data</cdm:ProductVersion>
 <cdm:Label>your data</cdm:Label>
 </cdm:process.ManagementSoftwareSystem>
 </idml:source>

 <!-- Operation... -->
 <idml:operationSet opid="1">
 <idml:create timestamp="2012-07-12T05:10:58Z">
 <cdm:CDM-ER-Specification>
 <cdm:sys.ComputerSystem id="CS" sourceToken="CS">
 <cdm:extension>
 <cdm:extattr name="sensor_foobar_xa1" category="_internal"></
cdm:extattr>
 </cdm:extension>
 </cdm:sys.ComputerSystem>
 </cdm:CDM-ER-Specification>
 </idml:create>
 </idml:operationSet>
</idml:idml>

Extended instances
In the old Common Data Model, the large chunks of data had to be split into the key-value pairs and
stored as extended attributes. Now you can use extended instances for storing large content, thanks to
which you do not need to create a large number of extended attributes. You can store low-level objects as
extended instances and attach them to top-level objects, which are CIs, as raw or preprocessed data.

Data model type

The structure of the XD attribute is a simple sequence of XML elements. Every model object type has the
XD attribute of a new Java ExtendedInstanceData type. This type allows for storing any type of
content, for example plain text, like command output, XML, CSV, or CDATA.

You can group extended instances by type, the default type is General.

Viewing extended instances

After you run a discovery of a sensor, for which you specified the XD attribute, you can view extended
instances in Data Management Portal. Open the Details pane of a discovered object. Each extended
instance type is displayed on a separate tab.

Example of usage in a sensor

The following example shows the ExtendedInstanceData type that is used to store raw content. The
lsofOutput and ifconfigOutput variables are the string variables that store command outputs. In
this example, the outputs are not processed, but they can be formatted as an XML or JSON.

 SComputerSystem scs = ModelFactory.newInstance(SComputerSystem.class);
 scs.setHierarchyDomain("sys.unix.linux");
 scs.setHierarchyType("RedHat");
 scs.setManufacturer("RedHat");
 scs.setModel("Linux");
 scs.setSerialNumber("as00123012");

 ExtendedInstanceData xd = new ExtendedInstanceData();
 xd.addInstance("lsof", lsofOutput);

Chapter 1. SDK Developer's Guide 25

 xd.addInstance("ipInterfaces", ifconfigOutput);
 xd.addInstance(null, "Linux vmw009128109120 2.6.32-220.el6.x86_64 #1
SMP Wed Nov 9 08:03:13 EST 2011 x86_64 x86_64 x86_64
GNU/Linux");
 scs.setXD(xd);

As a result, the following map of attributes with the XD attribute filled with correct XML is stored. The XML
creates elements for the instance type with the elements of raw data of the same type inside, enclosed by
<instance>. The instance that is created with the null type is placed in the default type <general>.

manufacturer -> RedHat
hierarchyType -> RedHat
XD -> <xml>
 <general>
 <instance>Linux vmw009128109120 2.6.32-220.el6.x86_64 #1 SMP Wed Nov 9 08:03:13
EST 2011 x86_64 x86_64 x86_64 GNU/Linux</instance>
 </general>
 <ipInterfaces>
 <instance>eth4 Link encap:Ethernet HWaddr 00:50:56:00:72:92
 inet addr:9.128.109.120 Bcast:9.128.109.255 Mask:255.255.255.0
 inet6 addr: fe80::250:56ff:fe00:7292/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:805298636 errors:0 dropped:0 overruns:0 frame:0
 TX packets:665767802 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:590819760949 (550.2 GiB) TX bytes:272393336858 (253.6 GiB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:833223633 errors:0 dropped:0 overruns:0 frame:0
 TX packets:833223633 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:594042898379 (553.2 GiB) TX bytes:594042898379 (553.2 GiB)

 </instance>
 </ipInterfaces>
 <lsof>
 <instance>pickup 31017 postfix mem REG 8,2 1580928
 1066619 /usr/lib64/mysql/libmysqlclient.so.16.0.0
 pickup 31017 postfix mem REG 8,2 184088
 139800 /lib64/libpcre.so.0.0.1
 pickup 31017 postfix mem REG 8,2 63304
 139295 /lib64/liblber-2.4.so.2.5.6
 pickup 31017 postfix mem REG 8,2 308912
 130952 /lib64/libldap-2.4.so.2.5.6
 pickup 31017 postfix mem REG 8,2 156872
 130819 /lib64/ld-2.12.so
 pickup 31017 postfix 0u CHR 1,3 0t0
 3640 /dev/null
 pickup 31017 postfix 1u CHR 1,3 0t0
 3640 /dev/null
 pickup 31017 postfix 2u CHR 1,3 0t0
 3640 /dev/null
 pickup 31017 postfix 3r FIFO 0,8 0t0
 10751 pipe
 pickup 31017 postfix 5u unix 0xffff8802350d9c80 0t0
 10659 socket
 pickup 31017 postfix 6u FIFO 8,2 0t0
 392456 /var/spool/postfix/public/pickup
 pickup 31017 postfix 7u unix 0xffff8802378e8680 0t0
 49305400 socket
 pickup 31017 postfix 8u REG 0,9 0
 3638 anon_inode
 loop0 31473 root cwd DIR 8,2 4096
 2 /
 loop0 31473 root rtd DIR 8,2 4096
 2 /
 loop0 31473 root txt unknown
 /proc/31473/exe
 </instance>
 </lsof>
</xml>
serialNumber -> as00123012
isPlaceholder -> false
hierarchyDomain -> sys.unix.linux
model -> Linux

26 Application Dependency Discovery Manager: SDK Developer's Guide

The preceding example uses the simplest addInstance methods. It is advised to use the
addInstance(String type, INSTANCE_FORMAT format, boolean isVisible, String
content) method that enables the control of two XML attributes of the <instance> element.

The first XML attribute is format, which is used to interpret the content. INSTANCE_FORMAT is a Java
enum with the following possible values: plain, XML, CSV, JSON, CDATA.

The second XML attribute is visible, which is used when some instances are not displayed in the UI.

Example:

<general><instance format="plain" visible="false">Linux vmw009128109120
2.6.32-220.el6.x86_64 #1 SMP Wed Nov 9 08:03:13 EST 2011 x86_64 x86_64 x86_64
GNU/Linux</instance></general>

Partial update

A CI can be stored with the same naming rules values from different data sources, and as a result the
values are merged into one object. To prevent that, partial update mechanism is used to merge two
different XML-formatted XD attributes. For example, if one source is stored with object 1, and another
source is stored with object 2, a CI that holds the merged attribute is created.
Object 1

 SComputerSystem xd1 = ModelFactory.newInstance
(SComputerSystem.class);
 xd1 = ModelFactory.newInstance(SComputerSystem.class);
 xd1.setHierarchyDomain("sys.unix.linux");
 xd1.setHierarchyType("RedHat");
 xd1.setManufacturer("RedHat");
 xd1.setModel("Linux");
 xd1.setSerialNumber("as00123012xd");

 ExtendedInstanceData xdone = new ExtendedInstanceData();
 xdone.addInstance("lsof", "content from CI1");
 xdone.addInstance(null, "content from CI1");
 xd1.setXD(xdone);

Object 2

 SComputerSystem xd2 = ModelFactory.newInstance
(SComputerSystem.class);
 xd2 = ModelFactory.newInstance(SComputerSystem.class);
 xd2.setHierarchyDomain("sys.unix.linux");
 xd2.setHierarchyType("RedHat");
 xd2.setManufacturer("RedHat");
 xd2.setModel("Linux");
 xd2.setSerialNumber("as00123012xd");

 ExtendedInstanceData xdtwo = new ExtendedInstanceData();
 xdtwo.addInstance("ips", "content from CI2");
 xdtwo.addInstance(null, "content from CI2");
 xd2.setXD(xdtwo);

Merged attribute

manufacturer -> RedHat
hierarchyType -> RedHat
XD -> <xml>
 <general>
 <instance>content from CI2</instance>
 </general>
 <lsof>
 <instance>content from CI1</instance>
 </lsof>
 <ips>
 <instance>content from CI2</instance>
 </ips>
</xml>
serialNumber -> as00123012xd
isPlaceholder -> false
hierarchyDomain -> sys.unix.linux
model -> Linux

Chapter 1. SDK Developer's Guide 27

All not overlapping attributes from the first object and the second object are present with their values in
the merged attribute and the general type has the instances from the object that was stored as last. The
partial update for the XD attribute of every model object is made with respect to an instance type.

MQL queries with EVAL operator (XA and XD attributes only)

Many CDM attributes are moved into XML content of the XA or XD attributes. Therefore, MQL syntax
supports a new operator eval, which can be added in the where clause. The eval operator enables
querying CIs by the values of extended attributes or extended instances.

Note: All MQL queries examples contain escaped quotation marks (\"value\") because it is assumed
that the queries are run in the following manner:

./api.sh -u username -p password find "MQL query"

For example, the following query was run to find a computer system with the productID attribute set to
'prod1':

SELECT * FROM ComputerSystem WHERE productID == 'prod1'

The following equivalent query uses the eval operator:

SELECT * FROM ComputerSystem WHERE XA eval '/xml
[attribute[@category=\"taddm_global\" and @name=\"productID\"]=\"prod1\"]'

The eval operator can be followed by any valid XPath expression that returns Boolean true or false value
to enable the performance of correct SQL filtering by the persistence layer.
More examples

• Find all ComputerSystems, which have any extended attribute with the val value:

– MQL:

SELECT * FROM ComputerSystem WHERE XA eval '/xml[attribute=\"val\"]'

– SQL:

SELECT * FROM compsys WHERE xmlexists('$c/xml[attribute="val1"]'
passing compsys.xa_x as "c")

• Find a ComputerSystem with the attr2 extended attribute, which has the category set to Other
and value set to two:

– MQL:

SELECT * FROM ComputerSystem WHERE XA eval '/xml/attribute
[@name=\"attr2\" and @category=\"Other\" and text()=\"two\"]'

– SQL:

SELECT * FROM compsys WHERE xmlexists('$c/xml/attribute[@name="attr2"
 and and @category="Other" and text()="two"]' passing compsys.xa_x as
 "c")

Extending sensor discovery scope with Simplified Model
You can easily extend the discovery scope of a sensor by using new functions of the Simplified Model. The
following procedure shows an example configuration, on which you can base customization of your own
sensors.

About this task
The following procedure shows the configuration of a simple script-based sensor for MongoDB database,
when MongoDB server is installed.

28 Application Dependency Discovery Manager: SDK Developer's Guide

Prerequisites
If you want the sensor to store extended attributes, first you must define them for a particular data
model type. For detailed instruction, see “Creating extended attributes in Domain Management
Portal” on page 22.

For this procedure, two extended attributes were created with the following parameters:

• SDeployableComponent type:

– Extended attribute name - hasDatabaseIndexDef
– Extended attribute type - Boolean
– Extended attribute category - General

• SSoftwareServer type:

– Extended attribute name - DatabaseCnt
– Extended attribute type - Integer
– Extended attribute category - Markers

Note: The following procedure does not provide details about new functions of the Simplified Model. It
rather shows how to use these functions. For more information, see the appropriate topics in the
“Simplified Model” on page 15 section of the TADDM documentation.

Procedure

1. Create custom server template by using Custom Servers pane in Discovery Management Console.
Custom Servers pane contains templates of sensors that can be run by generic server sensor or as
custom application server sensor.
Open the details for MongoDB server. It is enabled. It stores objects of the AppServer type. In the
Identifying Criteria section, you must specify a file name. When generic server sensor finds a process
that contains this file name, it runs the custom sensor. In this case, the file name is mongod.exe.

You can now run a discovery but only RuntimeProcess objects are discovered.
2. Configure extension for template sensor.

a) Open the TADDM home directory and go to the dist/etc/templates/commands directory.
Create a command file with the same name as the template defined in Custom Servers, in this
case, MondoDB.
The content of this file is executed when the custom sensor is run.
The MongoDB file contains the following line:

SCRIPT[com.ibm.cdb.core.jython253_2.5.3]:etc/templates/commands/
extension-scripts/mongodb.py

It means that the mongodb.py script is executed when the sensor is run.
b) Configure the mongodb.py script.

The following sections provide brief description of the most important elements of this script.
The default beginning of the sensor

(os_handle, result, appserver, seed, log, env) = sensorhelper.init
(targets)

This section specifies parameters that are passed by platform that is called targets:

• os_handle - an operating system object.
• result - the result, where the objects are attached.
• appserver - the app server object that represents runtime processes that match the

template's condition.
• seed - the seed object that triggers the sensor.
• log - logger.

Chapter 1. SDK Developer's Guide 29

• env - environment settings.

Creating the main object - defining class and hierarchy attributes

mdbserver = ModelFactory.newInstance(Class.forName('com.collation.
platform.model.topology.simple.SSoftwareServer'))
mdbserver.setHierarchyDomain('app.db.mongodb')
mdbserver.setHierarchyType('MongoDBServer')

In this section, a new type of class is used, SSoftwareServer. There are also new attributes,
which position a CI that is represented by this object on the maps of domains. These attributes
provide necessary details for the sensor.

• HierarchyDomain - specifies levels of domains. In this case, in the app.db.mongodb
value, app is an application server, db is a database server, and mongodb is a specific
database.

• HierarchyType - specifies the type of the object. In this case, mongodb that is used in the
HierarchyDomain attribute represents a database server, so the HierarchyType attribute
is set to MongoDBServer.

OpenId - a new generic naming rule attribute

print 'Primary IP : ' + seed.getPrimaryIpAddress().
getStringNotation()
print 'Port : ' + str(seed.getPort())
id = OpenId().addId('IP' , seed.getPrimaryIpAddress().
getStringNotation()).addId('port' , str(seed.getPort()))
ID = OpenId.generateDisplayName(id)
mdbserver.setInstanceID(ID)
mdbserver.setOpenId(id)
mdbserver.setHostComputerSystem(os_handle.getComputerSystem())

You must name the object that you created. To do so, you must define a naming rule and
specify attributes that provide unique values. For servers, naming rule is usually based on two
attributes. They are the primary service access point that is created from the server's primary
IP address, and a port, on which this service listens on.
The new OpenId attribute is a wrapper for a string attribute that gathers all values that are
used for GUID calculation. This new attribute arranges the values in the same order every time.
The addId method adds objects and set them as the value of the OpenId attribute.
There are also other, predefined attributes set for this sensor, for example instance ID, or host
computer system to attach the server to a computer system that is passed by a platform as an
operation system object attribute.

Setting the result object

print 'Setting mongodb server'
result.setServer(mdbserver)

Set the result object with the MongoDB server. If during the discovery the sensor fails, at least
this information is stored.

Extract databases function

def extractDatabases(mgbserver, dbListLines):
 databases = list([])
 dbDir = None
 currentDatabase = None
 XD = None
 XA = None

 for dbLine in dbListLines:
 print 'Processing line : ' + dbLine
 if "DATABASE" in dbLine :
 print 'Found a database ' + dbLine
 #Create physical files
 print 'Attach as files'
 dbLineTokens = dbLine.split(" ")
 dbName = dbLineTokens[2].strip()
 dbDir = dbLineTokens[4].strip()

30 Application Dependency Discovery Manager: SDK Developer's Guide

 print "Database name " + dbName
 print "Database directory " + dbDir

 #Create deployable components
 print "Create deployable component for database"
 database = ModelFactory.newInstance(Class.forName
('com.collation.platform.model.topology.simple.
SDeployableComponent'))
 database.setHierarchyDomain('app.db.mongodb')
 database.setHierarchyType('Database')
 database.setOpenId(OpenId().addId("databaseName", dbName))
 database.setName(dbName)
 database.setSoftwareServer(mgbserver)
 databases.append(database)
 currentDatabase = database
 XA = ExtendedAttributesData()
 XA.attachTo(currentDatabase)
 XD = ExtendedInstanceData()
 currentDatabase.setXD(currentXD)

 elif dbDir is not None and dbDir in dbLine and "Metadata for"
in dbLine:
 print "Found file " + dbLine + " to read for XD"
 databaseConfFileLineTokens = dbLine.split(" ")
 fileType = databaseConfFileLineTokens[3]
 fileName = databaseConfFileLineTokens[5]
 print "Instance type " + fileType
 print "Files content to read " + fileName

 if not fileName.endswith("bson"):
 cnfFileContent = readFileContent(fileName)
 print "Read content : " + cnfFileContent
 XD.addInstance(fileType,
ExtendedInstanceData.INSTANCE_FORMAT.json, 1, cnfFileContent)
 print "Added instance"

 if "index" in cnfFileContent :
 XA.addAttribute("hasDatabaseIndexDef", "true")
 xml = XA.toXML()
 print "Add XA marker for database " + dbName +
" with XML " + xml

 print "Attach files and deployable components"
 mgbserver.setDeployedComponents(tuple(databases))
 XA = ExtendedAttributesData()
 XA.addAttribute("Markers", DatabasesCnt", str(len(databases)))
 XA.attachTo(mgbserver)
 print "Add XA marker for server with xml " + xml

This function uses two containers for data. One contains extended attributes and the other
extended instances.
In the #Create deployable components section, sensor creates object for discovered
database by using the SDeployableComponent class type. The HierarchyDomain is set to
app.db.mongodb because it is the same domain, but the HierarchyType attribute is set to
Database. The naming rule is based on the database name, so the openId attribute is set to
databaseName. A predefined attribute name is set (database.setName(dbName)), and the
component is attached (databases.append(database)) to a server with software server
attribute (database.setSoftwareServer(mgbserver)).
What is most important in this section, are two data containers. These containers are created
for the newly created database. The XA attribute contains ExtendedAttributesData object
for extended attributes and the XD attribute contains ExtendedInstanceData object for large
chunks of data.
ExtendedAttributesData

By using the XA = ExtendedAttributesData() attribute, the sensor creates an
ExtendedAttributesData object and adds it to a CI. By using XA.addAttribute
method, it adds the attributes to this object, which are name and value. For example, in the
extended attribute for the server object, sensor creates ExtendedAttributesData
object, and adds the attributes, which are DatabaseCnt and category Markers. To convert
the attribute into layout that can be stored, the sensor calls the toXML method.

Chapter 1. SDK Developer's Guide 31

ExtendedInstanceData
By using the XD = ExtendedInstanceData() attribute, the sensor creates an
ExtendedInstanceData object. In this sensor, the XD attribute is used to store the
contents of files that represent the inner structure of the database. The content of the
database is read by the readFileContent function that is defined in the following way:

def readFileContent(fileName):
 print "Open file to read : " + fileName
 f = open(fileName, 'r')
 content = ""
 for line in f:
 content = content + line + "\n"
 return content

The following method is used to store the data:

XD.addInstance(fileType, ExtendedInstanceData.
INSTANCE_FORMAT.json, 1, cnfFileContent)

This particular addInstance method contains the following parameter:

• fileType - specifies the instance type.
• ExtendedInstanceData.INSTANCE_FORMAT.json - specifies the instance format.
• 1 - means true, and specifies that the content is visible on the details pane.
• cnfFileContent - specifies the instance content.

What to do next

• You can run the discovery of MongoDB with the updated scope.
• You can view the results of the discovery in Data Management Portal in the Inventory Summary pane.

You can also browse generic folders in the Discovered Components pane and display details for the
discovered objects.

• You can create business applications for the object that you store and display the topology.
• You can see more examples of the Jython script.

More samples of Jython script
If you want to discover extended attributes that you defined for the ComputerSystem
(SComputerSystem), or AppServer (SSoftwareServer) class, refer to the following samples of the
Jython script.

Note: If you are modifying the existing script, for example, the example script ea_sensor_1.0.py,
overwrite the main part of the file. Also, the Standard Library Imports section must contain the from
com.collation.platform.model.util.ea import ExtendedAttributesData line, like in
the following example:

import sys
import java

from java.lang import System
from com.collation.platform.model.util.ea import ExtendedAttributesData

Jython script that is used to extend a computer system template - the main section

try:
 (os_handle, result, computerSystem, seed, log) = sensorhelper.
init(targets)

 patchVersionOut = sensorhelper.executeCommand("tail -1 /etc/
patch_status | cut –f2 –d,")
 patchDateOut = sensorhelper.executeCommand("tail -1 /etc/patch_
status | cut –f3 –d,")

 if patchVersionOut != None:
 XA = ExtendedAttributesData()
 XA.addAttribute("patchVersion", patchVersionOut)

32 Application Dependency Discovery Manager: SDK Developer's Guide

 XA.addAttribute("patchDate", patchDateOut)
 XA.attachTo(computerSystem)
 else:
 log.info("patchVersion command return no output")
except:
 LogError("unexpected exception getting patchVersion
information")

Jython script that is used to extend a custom server template - the main section

try:
 (os_handle, result, appServer, seed, log, env) = sensorhelper.
init(targets)

 patchVersionOut = sensorhelper.executeCommand("tail -1 /etc/
patch_status | cut –f2 –d,")
 patchDateOut = sensorhelper.executeCommand("tail -1 /etc/patch_
status | cut –f3 –d,")

 if patchVersionOut != None:
 XA = ExtendedAttributesData()
 XA.addAttribute("patchVersion", patchVersionOut)
 XA.addAttribute("patchDate", patchDateOut)
 XA.attachTo(appServer)
 else:
 log.info("patchVersion command return no output")
except:
 LogError("unexpected exception getting patchVersion
information")

TADDM API overview
All discovery data that is displayed using the Data Management Portal is accessible using the TADDM
Application Programming Interfaces (API). This topic describes the principal TADDM APIs: the Java API,
the SOAP API, the REST API, and the Command Line Interface API.

Application programming interface overview
You can access discovery data by using specific types of the application programming interface (API.)

All discovery data can be accessed by using the following types of API:

Java API
The complete TADDM API, enabling Java application development and integration.

SOAP API
Exposes elements of the TADDM API as a Simple Object Access Protocol (SOAP) Web service.

REST API
Exposes elements of the TADDM API as a RESTful Web service.

Command-line interface API
Provides a wrapper around the Java API to enable access from the command line for scripting, simple
customizing, and scheduling.

XML schema overview
The TADDM XML schema flattens the hierarchical structure of the Common Data Model into an XML
document, with most contained objects embedded within the document.

TADDM API methods return an XML document containing a list of objects specified by the Model Query
Language (MQL) query, where applicable. This document is larger than the original data but is easier to
search using tools such as XQuery or XPath.

The TADDM SDK represents the dependencies between objects using independent dependency objects,
which connect providers with dependent services using object IDs.

When formatting XML documents for use with the TADDM SDK, keep in mind the following considerations:

• XML is a hierarchical model and does not permit cycles.
• The property_nameX is a ModelObject.

Chapter 1. SDK Developer's Guide 33

• The abbreviated_searched_class_name is the searched class name and not the actual class name.
• The xsi:type and GUID are XML attributes, and are not represented as separate elements.
• Array: When the element is part of an array, N is its index.

The following table describes the XML document structure:

Table 6. XML document structure

XML Description

<?xml version="1.0" encoding="UTF-8"?> Header

 <results
 xmlns="urn:www-collation-com:1.0"
 xmlns:coll="urn:www-collation-com:1.0"
 xmlns:xsi="http://www.w3.org/2001/
 XMLSchemainstance"
 xsi:schemaLocation=
 "urn:www-collation-com:1.0
 urn:www-collation-com:1.0/results.xsd">

Top-level result node, including the XML
namespace specification

 <abbreviated_searched_class_name
 xsi:type="full class name"
 array="N"
 LINK="guid"
 lastModified="Last Modified Time in ms"
 guid="unique model object id">

Class attributes, such as last modified time
and unique object ID

 <property_name1>"text value"
 </property_name1>
 ...
 <property_nameX
 xsi:type="full class name"
 guid="unique model object id">
 <property_name1>"text
 value"</property_name1>
 ...
 <property_nameN>"text
 value"</property_nameN>
 <property_nameX/>
 ...
 <property_nameN>"text value"
 </property_nameN>
 <property_nameQ/>

Attribute values and embedded objects

 </abbreviated_searched_class_name> End of values

</results> End of results

JSON format overview
The REST API uses JSON format to return data representing model objects; you can request JSON output
by specifying the feed=json parameter on a REST API call.

The following table describes the structure of the JSON format used to represent model objects.

JSON element Description

[Begins an array of model objects.

{ Begins a model object, which might contain zero or more model
objects.

"name":value,"name":value One or more name-value pairs, separated by commas.

34 Application Dependency Discovery Manager: SDK Developer's Guide

JSON element Description

"_class":"class_name" A required name-value pair containing the name of the model object.

The model object class name can be in either of two forms:

• Short name (for example, ComputerSystem)
• Fully qualified name (for example,

com.collation.platform.model.topology.sys.ComputerSystem

If you specify longClassName=true on a REST query, then all of
the returned values for _class contain the full model name.
Otherwise, the short name is returned unless it is not unique (in
which case the full name is returned).

} Ends a model object.

] Ends an array of model objects.

The following example shows JSON output from a ComputerSystem query at a depth of 1:

[{
"displayName":"esx3-vm16-rhes4",
"devices":[{"_class":"DiskDrive","guid":"2A2827686EB03465A955DE54BD3F6AB5"},
{"_class":"DiskDrive","guid":"D7DAF9DCD1E7347684A0D02E36E212DC"}],
"lastModifiedBy":"system",
"l2Interfaces": [{"_class":"L2Interface","guid":"FA048919AA953BA5A09580496017A776"},
{"_class":"L2Interface","guid":"297B125690B33B778C347E12CFC62689"}],
"createdBy":"system",
"_class":"LinuxUnitaryComputerSystem",
"controllers":[{"_class":"Controller","guid":"7B72D3B5448D30388F9D9497EA8F970D"},
{"_class":"Controller","guid":"B619ABB8B8343C1FAB5BF87AD425559E"}],
"guid":"C2D379A936433258BABBF682A8E71A82",
"CPUSpeed":3191000000,
"fqdn":"esx3-vm16-rhes4",
"contextIp":"9.43.73.87",
"OSInstalled":[{"_class":"Linux","guid":"04BFCBCD2A1733258F5C95CD281D91AF"}],
"memorySize":3988783104,
"ipInterfaces":[{"_class":"IpInterface","guid":"9CAA8E0197333BAD924EA3CCB1860920"},
{"_class":"IpInterface","guid":"C2E6D21CF24435EABCB8AA8136BB9F1B"}],
"signature":"9.43.73.87(000C29A467A9)",
"systemId":"2b095749",
"bidiFlag":3,
"name":"esx3-vm16-rhes4",
"OSRunning":{"_class":"Linux","guid":"04BFCBCD2A1733258F5C95CD281D91AF"},
"CPUType":"Intel(R) Xeon(TM) MV",
"type":"ComputerSystem",
"numCPUs":1,
"architecture":"i686",
"fileSystems":[{"_class":"UnixFileSystem","guid":"CDA94FB8C84B300ABA2A42E1EFEE6234"},
{"_class":"NFSFileSystem","guid":"6300742848BA39478EAEE4FB4709DF7A"}],
"lastModifiedTime":1225806427541
}]

Model Query Language overview
The find() command from the TADDM API accepts a query string, specified using the Model Query
Language (MQL). The MQL acts as a filter to limit the selected objects.

MQL uses a SQL-like syntax to specify the model object class or other data sources, their attributes, along
with a filter expression.

The syntax of an MQL query is as follows:
SELECT attribute-list FROM data-sources [WHERE expression]

Table 7 on page 36 describes the elements of an MQL query. MQL is not case-sensitive.

Chapter 1. SDK Developer's Guide 35

Table 7. MQL query elements

Element Description

attribute-list The value *, or a comma-separated list of attributes of the source
ModelObject class. Embedded attributes can also be specified.

An attribute name always starts with a lowercase letter, unless the
first and the second letter are both uppercase. Subsequent letters
in the attribute name can be uppercase or lowercase. Examples of
attribute names include the following:

• displayName
• fqdn
• OSRunning

data-sources A comma-separated list of model object class names. These
classes must be persistent, since you cannot query non-persistent
objects.

expression The filter expression, expressed using the following format:

member-name OP expression [...]

where:

• Member-name is an attribute of the selected data source, and
can include dot separated members (the member classes
specified in the query expression must be persistent. You can
query the member attributes to get the values that match the
query expression).

• OP is an operator.
• Expression is a statement that returns a value.

For example:

SELECT *
 FROM ComputerSystem
 WHERE OSRunning.OSName == 'Linux'

In this case, OSRunning is an OperatingSystem object referenced
by a ComputerSystem (which is a persistent object), and OSName
is a primitive member.

See Table 8 on page 36 for a description of operators and
associated precedence.

Table 8 on page 36 describes the MQL operator precedence, with higher values representing greater
precedence.

Table 8. MQL Operator Precedence

Token Operator Precedence

or logical OR 1

and logical AND 2

instanceof is instance of 3

== equals 3

36 Application Dependency Discovery Manager: SDK Developer's Guide

Table 8. MQL Operator Precedence (continued)

Token Operator Precedence

!= not equal to 3

> greater than 3

>= greater than or equal 3

< less than 3

<= less than or equal 3

starts-with starts-with 4

ends-with ends-with 4

equals equals 4

not-equals not equals 4

is-null is null 4

is-not-null is not null 4

in in 5

() parentheses 5

exists array contains 5

upper() function 5

lower() function 5

! unary not 5

. dot selection 6

contains contains 3

eval eval 3

MQL does not support the following SQL SELECT operators or features:

• GROUP BY
• HAVING
• DISTINCT
• nested SELECTs
• BETWEEN
• Aggregates

You can specify the logical operator AND as and, AND, or &&, and the logical operator OR as or, OR, or ||.
In addition, you must enclose all strings using single quotation marks, for example, 'IBM'.

Joins

MQL supports left inner joins against model objects, as illustrated by the following example:

SELECT Db2Server.* FROM Db2Server, OracleInstance WHERE Db2Server.port == OracleInstance.port

This join returns all Db2Server model objects in cases when the port number of Db2Server and the
OracleInstance are equal. MQL does not support combinations of right outer, left outer, full, or cross joins

Chapter 1. SDK Developer's Guide 37

Limitations

On DB2 version 9.5, the equals and not-equals operators fail when they are run on attributes of the
CLOB data type in the database. The following exception is thrown:

com.ibm.db2.jcc.am.SqlSyntaxErrorException: DB2 SQL Error: SQLCODE=-418,
SQLSTATE=42610

SELECT statement grammar

The following example shows the grammar of the SELECT statement. See the Javadoc for more details
and the latest updates.

statement := SELECT attribute-list [EXCLUDING attribute-list]
 FROM [ONLY] class_list { WHERE [expression |
 exists_expr] }
[FETCH FIRST n { ROW | ROWS } [ONLY]] [ORDER BY order_list]
attribute_list := attrib {, attrib}* | *
class_list := domain_class {, domain_class }*
class := <a model object class>
exists_expr := exists(array_attrib op value {logical_op array_attrib op value}*)
expression := [attrib op value | attrib post-op | pre-op (attrib)
 |[NOT] IN (expression [, ...]){logical_op expression}*
value := <data value>
in_expr := [NOT] IN (expression [, expression ...])
array_attrib := <series of attributes where at least the second to last
 attribute is an array >
op := != | == | > | < | >= | <= | contains | starts-with | ends-with |
 equals | not-equals | instanceof | eval
logical_op := AND | OR | && | ||
post_op := is-null | is-not-null
pre_op := lower | upper
attrib := {class .} [<an attribute of a class>{.embedded_attribute} | *]
embedded_attribute := [<embedded attribute>{.embedded_attribute} | *]
domain_class := {domain_list} class
domain_list := domain {, domain}* :
domain := <the server from which to pull data from, default: local database>
order_list := attrib [ASC | ASCENDING | DESC | DESCENDING] [, order_list]

Attributes can contain wildcard characters. Also, all keywords, such as SELECT, FROM, and WHERE are
not case-sensitive.

Note: The value can be of the attrib type, when the basic operator op (!=|==|>|<|>=|<=) is used.

Examples

The following example shows an MQL query that filters for computer systems running the Linux operating
system:

SELECT *
 FROM ComputerSystem
 WHERE OSRunning.OSName == 'Linux'

The following query uses the EXISTS operator to query array membership, matching all computers
systems that have an interface listening on ibm.com or their netmask set to 255.255.255.0:

SELECT *
 FROM ComputerSystem
 WHERE EXISTS (ipInterfaces.ipNetwork.name ends-with '.ibm.com'
 OR ipInterfaces.ipNetwork.netmask == '255.255.255.0')

The following query selects all computer systems that have the attribute virtual set to true:

SELECT *
 FROM ComputerSystem
 WHERE virtual

38 Application Dependency Discovery Manager: SDK Developer's Guide

The following query selects all computer systems that have the attribute virtual set to false:

SELECT *
 FROM ComputerSystem
 WHERE not virtual

The following query selects all operating systems that have the installed service attribute with the name
that contains "Wireless". Since the installed service attribute is available only on the Windows operating
system, you must use join.

SELECT OSInstalled
 FROM ComputerSystem,WindowsOperatingSystem
 WHERE ComputerSystem.guid==WindowsOperatingSystem.parent.guid
 AND
 EXISTS(WindowsOperatingSystem.installedServices.displayName contains 'Wireless')

The following query selects all AppServers with the primarySAP attribute that has a port specified as its
value:

SELECT primarySAP.portNumber,displayName
 FROM AppServer
 WHERE primarySAP.portNumber==9084

The following query selects all RuntimeProcesses that among their ports have port 1415. The query must
use the EXISTS operator because the ports attribute for RuntimeProcess is an array attribute.

SELECT ports.portNumber,displayName
 FROM RuntimeProcess
 WHERE EXISTS (ports.portNumber==1415)

MQL queries with NOT EQUAL TO operator (!=)
The queries with NOT EQUAL TO operator do not return results that contain an attribute that is set to
NULL because such a result is evaluated to "unknown".
Example

It is often assumed that the number of results that are returned from the following API find command:

./api.sh -u <admin> -p <pass> find --count "select * from ComputerSystem"

equals the sum of the results that are returned from the following two API find commands:

./api.sh -u <admin> -p <pass> find --count "select * from
ComputerSystem where manufacturer == 'IBM'"

./api.sh -u <admin> -p <pass> find --count "select * from
ComputerSystem where manufacturer != 'IBM'"

However, the manufacturer attribute is set to NULL, therefore it is excluded from the results that are
returned from the query that contains NOT EQUAL TO operator.

The queries that contain the NOT EQUAL TO operator can have the following forms:

select * from ComputerSystem where manufacturer != 'IBM'

select * from ComputerSystem where not(manufacturer == 'IBM')

If you want to select all ComputerSystems with manufacturer other than IBM, use the following
query:

select * from ComputerSystem where manufacturer != 'IBM'
or manufacturer is-null

Chapter 1. SDK Developer's Guide 39

MQL queries with EVAL operator (XA and XD attributes only)

Many CDM attributes are moved into XML content of the XA or XD attributes. Therefore, MQL syntax
supports a new operator eval, which can be added in the where clause. The eval operator enables
querying CIs by the values of extended attributes or extended instances.

Note: All MQL queries examples contain escaped quotation marks (\"value\") because it is assumed
that the queries are run in the following manner:

./api.sh -u username -p password find "MQL query"

For example, the following query was run to find a computer system with the productID attribute set to
'prod1':

SELECT * FROM ComputerSystem WHERE productID == 'prod1'

The following equivalent query uses the eval operator:

SELECT * FROM ComputerSystem WHERE XA eval '/xml
[attribute[@category=\"taddm_global\" and @name=\"productID\"]=\"prod1\"]'

The eval operator can be followed by any valid XPath expression that returns Boolean true or false value
to enable the performance of correct SQL filtering by the persistence layer.
More examples

• Find all ComputerSystems, which have any extended attribute with the val value:

– MQL:

SELECT * FROM ComputerSystem WHERE XA eval '/xml[attribute=\"val\"]'

– SQL:

SELECT * FROM compsys WHERE xmlexists('$c/xml[attribute="val1"]'
passing compsys.xa_x as "c")

• Find a ComputerSystem with the attr2 extended attribute, which has the category set to Other
and value set to two:

– MQL:

SELECT * FROM ComputerSystem WHERE XA eval '/xml/attribute
[@name=\"attr2\" and @category=\"Other\" and text()=\"two\"]'

– SQL:

SELECT * FROM compsys WHERE xmlexists('$c/xml/attribute[@name="attr2"
 and and @category="Other" and text()="two"]' passing compsys.xa_x as
 "c")

Using the Java API
The Java API provides control over the discovery process and aspects of the Common Data Model
including access to the resulting model data.

Using the Java API, you can create applications that add, update, and delete model objects. You can
query model objects by class name or object ID number. You can also use the interface to manage
relationships between objects, perform comparisons, and examine the change history.

The model data can be filtered on the server and is returned to the client in XML format. You can then
perform transformations and further queries on the client, as required. The Java API also offers methods
you can use to manage sessions and implement security-related operations.

The Java API is contained in the com.collation.proxy.api.client.CMDBApi class, which
communicates with an RMI ApiServer on the TADDM server.

40 Application Dependency Discovery Manager: SDK Developer's Guide

Set the com.collation.home property to $COLLATION_HOME/sdk in the SDK distribution root directory.
Using the Java command line, you can set the property as follows:

java -Dcom.collation.home=$COLLATION_HOME/sdk main_classname

Before you start using the Java API
Before you start creating Java applications, you must verify that your development environment is
properly configured.

Procedure

To verify your environment, complete the following steps:
1. Verify that the environment variables are properly set, and configure the
com.ibm.cdb.service.registry.public.port property.

See the section on configuring the TADDM SDK for more information about setting the environment
variables and specific configuration parameters.

2. Verify that the TADDM server is running.

See the section on verifying the SDK installation for more information.

Exploring a sample Java application
This section describes how to create, compile, and run a simple Java application.

Procedure

To create the Java sample application, complete the following steps:
1. Copy the following Java code into a file called FindXmlExample.java.

The source code is also available in the $COLLATION_HOME/sdk/examples/java directory.

package com.collation.proxy.api.examples.java;
// package com.collation.proxy.api.examples.java;

import com.collation.proxy.api.client.ApiConnection;
import com.collation.proxy.api.client.ApiException;
import com.collation.proxy.api.client.ApiSession;
import com.collation.proxy.api.client.CMDBApi;
import com.collation.proxy.api.client.DataResultSet;
import com.ibm.cdb.api.ApiFactory;

/**
 * Simple CMDB API findXML() example:
 * <p> get connection and log into api server
 * <p> find all machines which have more than 1 CPU
 * <p> find all Oracle instances
 */

public class FindXmlExample {

 public static void main(String[] args) {

 CMDBApi api = null;
 ApiSession sess = null;
 try {
 /*
 * Establish connection to api server
 * <p> ApiConnection.getConnection(host, port,
 trustoreLocation, useSSL)
 */
 ApiConnection conn =
 ApiFactory.getInstance().getApiConnection("localhost", -1,
 null, false);
 /*
 * Get a session:
 * <p> ApiSession.getSession(connection, username,
 password, version)
 */
 sess = ApiFactory.getInstance().getSession(conn, "smartoperator",
 "foobar",
 ApiSession.DEFAULT_VERSION);

Chapter 1. SDK Developer's Guide 41

 /*
 * Get an CMDBApi instance
 */
 api = sess.createCMDBApi();

 System.out.println("all machines which have more than 1 CPU:");
 String query = "select * from ComputerSystem where numCPUs>1";
 /*
 * Find all of the ComputerSystem have more than 1 CPU.
 * The method: findXml(query, depth, indent, mssGuid, permissions)
 * is deprecated, as the result set may be too large to fit into
 * memory. Instead, using cursors is encouraged:
 */
 DataResultSet data = api.executeQuery(query, null, null);
 while (data.next()) {
 System.out.println(data.getXML(4));
 }
 data.close();
 System.out.println("\nall Oracle instances:");
 query = "select * from OracleInstance";
 data = api.executeQuery(query, null, null);
 while (data.next()) {
 System.out.println(data.getXML(4));
 }
 data.close();

 } catch (ApiException ae) {
 System.err.println("api exception:" + ae);
 ae.printStackTrace();
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 ex.printStackTrace();
 } finally {
 try {
 if (api != null) {
 api.close();
 }
 if (sess != null) {
 sess.close();
 }
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 ex.printStackTrace();
 }
 }

 }
}

2. By default, the sample program connects to a TADDM server on the local host. If you wish to connect
to a remote server, change the following line:

ApiConnection conn = ApiFactory.getInstance().getApiConnection("localhost", -1,
 null, false);

For example, to connect to a server named taddmhost.ibm.com using the default ports:

ApiConnection conn = ApiFactory.getInstance().
 getApiConnection("taddmhost.ibm.com",-1, null, false);

By default, the sample program creates a session with a user ID of smartoperator and a password
of foobar. Change this to match a user ID and password that is defined to your TADDM server. For
example:

sess = ApiFactory.getInstance().
 getSession(conn, "administrator", "collation",ApiSession.DEFAULT_VERSION);

3. To compile the sample program, along with the other sample Java programs, complete the following
steps:

a. On UNIX systems:

1) Change to the $COLLATION_HOME/sdk/examples/java directory.
2) Make a build.sh executable:

42 Application Dependency Discovery Manager: SDK Developer's Guide

chmod +x build.sh

3) Run the build command:

./build.sh

b. On Windows:

1) Change to the %COLLATION_HOME%\sdk\examples\java directory.
2) Run the build command:

build.bat

If the SDK is installed separately from the TADDM server, make sure that javac is already in the path
and available.

4. Run the Java application using a command similar to the following example command:

% java -Dcom.collation.home=$COLLATION_HOME/sdk FindXmlExample

Alternatively, run the following command:

run.sh FindXmlExample

These commands run the sample program and retrieve the XML data from the TADDM server.

Details about the sample Java application
This section describes the operation of the FindXmlExample.java example.

 /*
 * Establish connection to API server
 */
 ApiConnection conn = ApiFactory.getInstance().
 getApiConnection("localhost", -1,null, false);

This segment creates a new ApiConnection object to the API server, which is used as a handle to manage
the API session between the client program and the TADDM server. The arguments are represented in the
following list:

• The host argument is the system on which the TADDM server is running.
• The second argument is the server port. A value of -1 specifies the default port as configured by
com.ibm.cdb.service.registry.public.port in the $COLLATION_HOME/sdk/etc/
collation.properties property file.

• The third and the fourth arguments control the SSL access.

 /*
 * Get a session
 *<p> ApiSession.getSession(connection, username, password,
 version)
 */
 sess = ApiFactory.getInstance().
 getSession(conn, smartoperator, foobar,ApiSession.DEFAULT_VERSION);
 /*
 * Get an CMDBApi instance
 */
 api = sess.createCMDBApi();

This segment connects the CMDBApi object to the TADDM server. If you need to connect to multiple
servers, in a large scale distributed data center scenario for example, you can use multiple CMDBApi
objects with each maintaining context to a specific TADDM server instance.

System.out.println("all machines which have more than 1 CPU:");
 String query = "select * from ComputerSystem where numCPUs>1";
 /*
 * Find all of the ComputerSystem have more than 1 CPU.
 * The method: findXml(query, depth, indent, mssGuid, permissions)
 * is deprecated, as the result set may be too large to fit into
 * memory. Instead, using cursors is encouraged:

Chapter 1. SDK Developer's Guide 43

 */
 DataResultSet data = api.executeQuery(query, null, null);

This segment uses an initialized CMDBApi object to retrieve data from the TADDM server using the
executeQuery method. The following describes the arguments:

• The first argument specifies the query. See the MQL query elements in the section on Introducing the
Model Query Language for more information.

• The second argument is the Management Software Systems (MSS) GUID. A value of null indicates that
the results are returned from the query for all records regardless of the MSS they are associated with.

• The third argument is the permissions array. Permissions are supplied during data-level access control
configuration. The permissions supplied here should match those used to configure data-level access
control. For example, supplying an "Update" permission would constrain the returned objects to those
the caller has the authority to update per the data-level access control configuration. A value of null
indicates that all objects the user has access to will be returned.

Related reference
“Management Software Systems” on page 52
MSS methods manage Management Software Systems in the Common Data Model. You can use the
Management Software System methods to register and delete an MSS in the Common Data Model. You
can also retrieve information about the Management Software Systems that have been registered with the
TADDM database.

Best practices

This section describes the following best practices when using the Java API:

• Optimizing data access
• Following links between model objects

Optimizing data access

As with other data access APIs, the TADDM API can return large amounts of data, potentially
overwhelming system resources. Therefore, avoid retrieving all data in large environments. This method
requires frequent synchronization with the TADDM database to ensure that all changes are captured.

The following options give you some different methods to retrieve your data:

• A suggested pattern of usage is to only retrieve the elements and identities, and not necessarily the
detailed configuration data. This limits the amount of data that is transferred. When you need the
detailed configuration of an element, you can make a subsequent findChanges() call using the object
ID as a parameter.

• Perform incremental change data access. This method requires that you use the following type of call to
the findChanges() method:

findChanges (java.lang.String root, java.lang.String query, int depth,
long start, long end,int changeType)

The start and end parameters specify a time range, while the changeType parameter specifies
Created, Deleted or Updated. This findChanges() call returns only those objects which are of the
type specified using the changeType parameter within the given time range. Use this method when
performing incremental synchronization of topology data after a full baseline data transfer.

• The find method returns all data at once, which can cause memory usage issues. To avoid this
problem, use the executeQuery method to scroll through data using cursors:

DataResultSet rs = api_.executeQuery("select * from ComputerSystem", null, null);
 while (rs.next()) {
 ...
 }
 rs.close();

44 Application Dependency Discovery Manager: SDK Developer's Guide

• Use the findCount method to efficiently count the number of objects matching a query:

long count = api.findCount(“select * from ComputerSystem”, null);

Larger memory settings for the Topology Manager

If you are running non-specific queries against large databases, you can encounter memory issues on the
TADDM server and the API client. Use specific queries to identify the size of the result sets and memory
requirement.

For more generic queries that generate a large result set, more memory must be allocated. If you receive
an out of memory error message, increase memory available to Java virtual machine.

To increase the available memory, use the following values:

• On the TADDM server you can increase available memory by editing server's deployment configuration
file::

– Domain server: cmdb-context.xml
– Synchronization server: ecmdb-context.xml
– Storage Server: storage-server-context.xml
– Discovery Server: discovery-server-context.xml

In the appropriate file, locate the jvmArgs property for the JVM that is affected by out of memory error
and increase the memory by changing the DTaddm.xmx64 property.

• On the API client, increase the memory specified for the client application, for example in the api.sh
or api.bat files.

Following links between model objects

Most data elements in the Common Data Model are stand-alone. In many cases, links between model
objects, such as LogicalDependency, are represented by storing object IDs, which the TADDM API
does not automatically follow. In these cases, you must apply additional logic within your client
application.

Java API Method summary
Using the Java API, you can create applications that add, update, and delete model objects. You can
query model objects by class name or object ID number. You can also use the interface to manage
relationships between objects, perform comparisons, and examine the change history in the TADDM
database.

The Java API can be summarized using the following categories that are presented in more detail in their
appropriate sections:

• Managing sessions
• Discovery management
• Managing the model
• Find, update, and delete operations
• Managing collections
• Managing relationships
• Metadata
• Management Software Systems
• MSSObjectLink
• Change history
• Presentation
• Managing versions

Chapter 1. SDK Developer's Guide 45

• Security
• Creating and managing access lists
• Managing application templates

Change history
Change history methods determine the change history within the Common Data Model. You can use the
change history methods to retrieve the change history for managed elements within the Common Data
Model. You can also trigger the propagation and calculation of the change history, as required.

Table 9 on page 46 describes the change history methods you can use.

Table 9. Change history methods

Method Description

getChangeHistory(Guid[] Guids, long
start, long end)

Return the change history for the
specified array of GUIDs.

getChangeHistory(Guid[] Guids, long
start, long end, int filterType)

Get the change history for multiple GUIDs, filtered
by the filterType parameter. This method is like the
getChangeHistory() with the addition of
filterType, which can be set to the following values:

• DataApi.CREATED
• DataApi.DELETED
• DataApi.UPDATED
• DataApi.UPDATECREATE
• DataApi.ANYCHANGE

getChangeHistory(Guid Guid, long
start, long end)

Return the change history for the specified GUID.

getChangeHistory(String[] classNames,
long start, long end)

Return the change history for the specified classes.

getChangeHistoryByPersistTime(String[]
classNames, long start, long end)

Return the change history for the specified classes
based on persist time.

getChangeHistoryInXML(Guid[] Guids,
long start, long end)

Return the change history for the specified array of
object IDs.

getChangeHistoryInXML(Guid[] Guids,
long start, long end, int filterType)

Get the change history for multiple GUIDs, filtered
by filterType. This method is like the
getChangeHistory() with the addition of
filterType, which can be set to the following values:

• DataApi.CREATED
• DataApi.DELETED
• DataApi.UPDATED
• DataApi.UPDATECREATE
• DataApi.ANYCHANGE

getChangeHistoryInXML(Guid Guid, long
start, long end)

Return the change history for the specified GUID.

46 Application Dependency Discovery Manager: SDK Developer's Guide

Table 9. Change history methods (continued)

Method Description

getPropagatedChanges(long primaryKey)

Note: This method is deprecated. Use the
getChangeHistory method.

Get the root causes for a given change history,
returned as an XML representation of
ChangeHistory objects that caused the actual
change. For instance, if an Apache Server module
changes, the changes are propagated to the top-
level Apache Server. You can use this method to
determine the cause that triggered the Apache
Server to be changed.

getPropagatedChangesInXML(long
primaryKey)

Note: This method is deprecated. Use the
getChangeHistory method.

Get the root causes for a given change history,
returned as an XML representation of
ChangeHistory objects that caused the actual
change. For instance, if an Apache Server module
changes, the changes are propagated to the top-
level Apache Server. You can use this method to
determine the cause that triggered the Apache
Server to be changed.

processChanges() Trigger propagation and calculation of the change
history since the last discovery or the last time that
processChanges() was called. Without it,
changes are not calculated until the next time a
discovery is run.

This method must be used for isolated changes.
For multiple updates, such as bulkload operations,
use the startBulkload() and endBulkload()
methods.

getChangedClasses(long start, long
end, int changeType)

Return an array of class types that have changed
between the start and end dates. The specified
change type can be any of the following:

• DataApi.CREATED
• DataApi.DELETED
• DataApi.UPDATED
• DataApi.UPDATECREATE
• DataApi.ANYCHANGE

getChangedClassesForDeltaSynching(long
start, long end, int changeType)

Returns an array of class types that have changed
between the start and end dates, based on persist
time. The specified change type can be any of the
following:

• DataApi.CREATED
• DataApi.DELETED
• DataApi.UPDATED
• DataApi.UPDATECREATE
• DataApi.ANYCHANGE

Chapter 1. SDK Developer's Guide 47

Table 9. Change history methods (continued)

Method Description

getChangeHistory(Guid[] Guids, long
start, long end, int offset, int
nextBatch)

Returns the change history for the specified list of
GUIDs. The nextBatch parameter specifies the size
of the batch of records to be returned, starting at
the specified offset. This allows for a scalable
approach to returning change history information.

Discovery management
Discovery methods manage discovery runs. You can use the discovery methods to start and stop
discoveries, and enable and disable update events. You can also use the methods to get the status of a
discovery, and clear all discovery elements from the topology.

Table 10 on page 48 describes the discovery methods that you can use.

Many of the following methods refer to the load-balanced discovery. For more information, see “Load-
balanced discover command” on page 104.

Table 10. Discovery methods

Method Description

abortDiscovery() End the current discovery run.

getStatus() Return the status of the current discovery run. The
status can be any of the following values:

• Running
• Idle

startDiscovery(String[] scope, String
runName, String locationTag)

Start a new discovery with a scope. The scope can
be a name, or contain IP ranges, networks, and
addresses, with specific IP addresses included and
excluded.

startDiscovery(RunDefinition runDef,
String runName)

Start a new discovery based on a discovery run
definition that specifies profile, scope, run name
and location tag information.

startDiscovery(Guid[] guidList, String
runName)

Start a rediscovery of the objects with the specified
globally unique identifiers (GUIDs).

abortDiscovery(long runId) End the specified discovery run.

 LoadbalancedDiscoveryStatus
loadbalancedDiscoveryStatus()

Return the status of the current load-balanced
discovery run. The status can be any of the
following values:

• Running
• Idle

startLoadbalancedDiscovery(String
scopeGroupName, String
discoveryPoolName, String profileName,
String locationTag)

Start a new load-balanced discovery against each
scope included in the scopeGroup attribute, and
on each server that belongs to the discovery server
specified in the poolName attribute.

48 Application Dependency Discovery Manager: SDK Developer's Guide

Table 10. Discovery methods (continued)

Method Description

startLoadbalancedDiscovery(String[]
fileNames, int maxScopeSize, String
profileName, String locationTag)

Start a new load-balanced discovery against each
scope starting from a specific file. Each file is
parsed, and a new group named from file name
(without extension) is created. In each group,
scopes are added with the maximum size specified
in the maxScopeSize attribute. The poolName
attribute is assumed to be the same as the
groupName attribute.

stopLoadbalancedDiscovery(String
discoveryPoolName)

Stop the load-balanced discovery for the specified
poolName attribute.

pauseLoadbalancedDiscovery(String
discoveryPoolName)

Pause the load-balanced discovery for the
specified poolName attribute. All scopes in the
discovery run are moved back to the 'forTake'
state. Current discoveries are aborted.

resumeLoadbalancedDiscovery(String
discoveryPoolName)

Return the LoadBalancedDiscoveryStatus object
which exposes all discovery pools that are in
progress, including pools that are in progress but
paused. In addition, it returns information about
which scopes are in progress, and which are
waiting in the queue.

 startDiscoveryRetID(String[]
scope, String runName, String
locationTag, String addressSpace)

Start a new discovery with a scope and return the
Discovery Run ID. The scope can be a name, or it
can contain IP ranges, networks, and addresses
with specific IP addresses included and excluded.

Find operations
Find methods access objects in the Common Data Model. You can use the find methods to return model
objects matching a specific query or return information about specific managed elements. You can also
use the methods to return objects that have changed during a specified time period.

Table 11 on page 49 describes the find operations you can perform.

Note: Many of the find methods using a depth parameter are now deprecated, because they do not
scale well when querying large amounts of data. If you need to query data at a depth greater than one,
use an executeQuery method. Each executeQuery method returns returns a DataResultSet object
from which you can retrieve information about model objects, and you can use a cursor to scroll through
the data.

Table 11. Find methods

Method Description

find(Guid guid, int depth, Guid mss,
String[] permissions)

Return information about a specific managed
element.

find(Guid Guid, int depth, String[]
permissions)

Same as find(String, int, Guid), except a
specific object instance is searched by GUID rather
than an entire set of objects using a query.

Chapter 1. SDK Developer's Guide 49

Table 11. Find methods (continued)

Method Description

find(String query, int depth, Guid
mss, String[] permissions)

Note: This method is deprecated. Use
executeQuery or a find method with a fillFlag
parameter.

Return model objects matching the specified
query. Note the following details about the depth
parameter:

• A depth of 0 returns an object with only its GUID
set.

• A depth of 1 returns all top-level attributes, along
with contained objects having only their GUID
attributes set.

• Setting depth to DEPTH_INFINITE recursively
locates all attributes until no additional objects
are found. Cycles are avoided.

find(String query, boolean fillFlag,
Guid mss, String[] permissions)

Return model objects matching the specified
query.

• query - Model language query to select and filter
results.

• fillFlag – Whether to populate all of the
attributes.

• mss - Managed Software System ID, or null if
none

• permissions - Optional list of permissions to
restrict results

findChanges(String query, int depth,
long start, long end, int changeType)

Note: This method is deprecated. Use the
executeChangesQuery method.

Return objects that have changed during the
specified period for a given change type.

findChanges(String query, boolean
fillFlag, long start, long end, int
changeType)

Note: This method is deprecated. Use the
executeChangesQuery method.

Return objects that have changed during the
specified period for a given change type.

findChanges(String query, int depth,
long start, long end, int changeType

Note: This method is deprecated. Use the
executeChangesQuery method.

Return objects that have changed in the specified
period for a given change type.

findChanges(String query, boolean
fillFlag, long start, long end, int
changeType)

Note: This method is deprecated. Use the
executeChangesQuery method.

Return objects that have changed in the specified
period for a given change type.

findCollections(Guid guid, String[]
permissions)

See the section on Managing collections.

50 Application Dependency Discovery Manager: SDK Developer's Guide

Table 11. Find methods (continued)

Method Description

findImpactedBusinessApplications(Guid[
] objects)

See the section on Presentation.

findImpactedBusinessServices(Guid[]
objects)

See the section on Presentation.

findJDO(String root, String jdoQuery,
String jdoVarDecl, int depth, Guid
mss, String[] permissions)

Note: This method is deprecated. Use the
executeJDOQuery method.

Same as find(String, int, Guid) except
that the query must contain a Java Data Object
query (JDOQL), with optional variable declarations.

findJDO(String root, String jdoQuery,
String jdoVarDecl, boolean fillFlag,
Guid mss, String[] permissions)

Note: This method is deprecated. Use the
executeJDOQuery method.

Same as find(String, int, Guid) except
that the query must contain a Java Data Object
query (JDOQL), with optional variable declarations.

findRelationships(Guid
managedElementGuid, int direction,
String type, int scope, String[]
permissions)

See the section on Managing relationships.

findRelationships(Guid[] sourceGuids,
Guid[] targetGuids, String[] types,
int comparisonFlags)

See the section on Managing relationships.

findXML(String query, int depth, int
indent, Guid mss, String[]
permissions)

Note: This method is deprecated. Use the
findXML(String,boolean,int,Guid,Strin
g[] method.

Return an XML document containing a list of all
objects matching the specified query. This method
is similar in function to find(String, int,
Guid) except that the objects are converted to
XML format.

findXML(Guid Guid, int indent, int
depth, String[] permissions)

Same as findXML(String, int, int, Guid)
except that a specific object instance is searched
by ID, rather than a whole set of objects using a
query.

findXML(String query, boolean
fillFlag, int indent, Guid mss,
String[] permissions)

Returns an XML document containing a list of all
objects which match the given query.

findCount(String query, String[]
permissions)

Returns a count of the objects matched by the
specified MQL query string.

executeQuery(String query, Guid mss,
String[] permissions)

Executes an MQL query and returns a scrolling
cursor interface.

executeQuery(String query, int
defaultDepth, Guid mss, String[]
permissions)

Executes an MQL query and returns a scrolling
cursor interface.

Chapter 1. SDK Developer's Guide 51

Table 11. Find methods (continued)

Method Description

executeChangesQuery(String query, int
defaultDepth, long start, long end,
int changeType, boolean deltaSynching)

Returns objects that changed in the given period
for a given change type. Otherwise, similar in
functionality to executeQuery
(String,int,Guid,String[]). If the
changeType parameter is set to DELETED, then
the WHERE clause in the query is ignored. All
objects of the specified model object class that
were deleted in the given time frame will be
returned. The returned model objects are the shell
model objects. They do not contain any attributes
in them. Only the GUID is set. If the changeType
parameter is set to ANYCHANGE, then in addition
to executing the normal find query, the deleted
shell objects will be returned. For the deleted
objects, however, the where clause is ignored.

findChangesForDeltaSynching(String
query, boolean fillFlag, long start,
long end, int changeType)

Note: This method is deprecated. Use the
executeChangesQuery method.

Returns objects that were persisted in the data
store during the specified period of time for the
specified change type.

Management Software Systems
MSS methods manage Management Software Systems in the Common Data Model. You can use the
Management Software System methods to register and delete an MSS in the Common Data Model. You
can also retrieve information about the Management Software Systems that have been registered with the
TADDM database.

Table 12 on page 52 describes the MSS methods you can use.

Table 12. Management Software System methods

Method Description

deleteManagementSoftwareSystem(Guid
guid)

Delete a Management Software System (MSS) from
the TADDM database. Objects and relationships
owned or discovered solely by this MSS are also
deleted. However, objects and relationships owned
or discovered by this and another other MSS are
not deleted. Only the association between this MSS
and the objects and relationships owned by it are
deleted.

getManagementSoftwareSystemLinks(Guid
guid, Guid mss, String[] permissions)

Return the source tokens for a managed element
or relationship. If a Management Software System
is not specified, the method returns the source
tokens for each Management Software System that
either discovered or owns the specified object.

52 Application Dependency Discovery Manager: SDK Developer's Guide

Table 12. Management Software System methods (continued)

Method Description

getManagementSoftwareSystems(Guid
guid, String[] permissions)

Get an array of Management Software Systems
that have been registered with the TADDM
database. Optionally, the GUID of a managed
element or relationship can be provided to return
only Management Software Systems that own the
managed element or relationship.

registerManagementSoftwareSystem
(ManagementSoftwareSystem mss)

Register a new Management Software System with
the TADDM database. Note the following details:

• This method only inserts an object. The method
does not replace or update an existing object.

• The model must contain keys for the object.
• When a key refers to a parent object, the parent

object must exist.
• When the object directly references a GUID, it is

the developer's responsibility to ensure that the
GUID exists in the TADDM database.

updateManagementSoftwareSystem
(ManagementSoftwareSystem mss)

Update or insert a Management Software System
into the database. Note the following details:

• This method can be used to insert, replace, or
update an existing object.

• The model must contain keys for the object.
• When a key refers to a parent object, the parent

object must exist.
• When the object directly references a GUID, it is

the developer's responsibility to ensure that the
GUID exists in the TADDM database.

MSSObjectLink
MSSObjectLink is an association between a Management Software System and a managed element that it
owns.

The MSSObjectLink methods can be used to retrieve all the MSSObjectLinks for the given MSS and
managed elements. These MSSObjectLinks represent either all the managed elements owned by a given
MSS, or all the MSSs that own a given managed element. MSSObjectLink is not stored as a model object,
therefore you are not able to use the find API to get the MSSObjectLink objects. Instead, use the APIs
described in Table 13 on page 53, along with the getManagementSoftwareSystemLinks API.

Table 13. MSSObjectLink

Method Description

getObjectSourceSystems(Guid[]
objectId, String[] permission)

Returns all the MSS that owns the managed
elements or relationships. This method returns an
array of MSSObjectLink that corresponds to the
MSS that owns a managed element. You can pass
in a maximum of 50 managed elements at a time in
the Guid array.

Chapter 1. SDK Developer's Guide 53

Table 13. MSSObjectLink (continued)

Method Description

getObjectSourceSystems(Guid objectId,
Guid mssGuid, String[] permission)

Returns an array of MSSObjectLinks where each
MSSObjectLink corresponds to the source token of
an object owned by the given MSS. If only the
mssGuid is specified, this method will return the
source tokens of all the objects that it owns. On the
other hand, if you specify only the object guid, it
will return the source tokens of all the MSSs that
own it.

getObjectSourceSystems(Guid mssGuid,
String mssSourceToken)

Returns an MSSObjectLink that corresponds to a
managed element that is owned by a given MSS
and identified by its source token (source token
must be specified).

getObjectSourceSystems(String
joinQuery)

Returns an array of MSSObjectLinks that satisfy the
JOIN query between MSSObjectLink and any other
model objects. Since MSSObjectLinks will be
stored directly as relational data rather than as a
model object, you wont be able to use MQL to JOIN
MSSObjectLink with any other model objects. The
joinQuery that is passed in this method will be an
SQL query instead. The attributes that are specified
in the SELECT clause of the SQL query must be the
attributes of the MSSObjectLink object since this
method returns an array of MSSObjectLink objects.
Example: Get all the ComputerSystems that are
owned by a given MSS.

SELECT mssobjlink_rel.obj_x,
mssobjlink_rel.msssourcetoken_x,
mssobjlink_rel.guid_x,

FROM mssobjlink_rel, compsys
WHERE mssobjlink_rel.obj_x = compsys.guid_x
AND mssobjlink_rel.mss_x='5D65T789UK3'

Managing access lists
The access list methods create and manage access list entries from the Java API. Vendor-supplied
applications can manage identities using these methods.

The following tasks can be completed using these API methods:
Create and delete the access list entry

You can create and delete the access list entry to maintain them automatically.
Update the properties of the access list entry

You can update the properties of the access list entry. The API can be used to change the password.
Get the properties of the access list entry

You can get the particular properties of the access list entry shown in Access List window of the
Discovery Management Console. The API cannot be used to retrieve the password.

Verify the property value of the access list entry
You can verify whether the given property value matches the property value in the existing access list
entry. This API can be used to verify the password of the access list entry.

Table 14 on page 55 describes the access list methods you can use.

54 Application Dependency Discovery Manager: SDK Developer's Guide

Note: Access list entries registered in the discovery profile are not supported by the API provided.

Table 14. Access list methods

Method Description

deleteDiscoveryAccessEntry(String
authClassName, String name)

Delete the access entry with the specified class
and name.

getAllDiscoveryAccessEntries() Get all the discovery access entries.

getDiscoveryAccessEntry (String
authClassName, String name)

Get the discovery access entry with the specified
class and name.

updateDiscoveryAccessEntry(DiscoveryAccessE
ntry discoveryAccess)

Update the properties of the access entry with the
specified class and name.

verifyDiscoveryAccessEntry(DiscoveryAccessE
ntry discoveryAccess)

Verify whether the given properties match the
current properties of the access entry with the
specified class and name.

Example Java code

1. The following example Java code shows how to create the connection, session, and API instance:

CMDBApi api;
try {
 ApiConnection conn_ = ApiFactory.getInstance().getApiConnection("localhost",
 -1,null,false);
 ApiSession session_ = ApiFactory.getInstance().getSession(conn_, user,
 password, CMDB_DEFAULT);
 api = session_.createCMDBApi();
 } catch (ApiException ex) {
 ex.printStackTrace();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

2. The following example Java code shows how to programmatically create discovery access entries:

try {
 // WebSphere access entry
 DiscoveryAccessEntry entry = new DiscoveryAccessEntry
 (DiscoveryAccessEntry.AUTHCLASS_WEBSPHERE, "user3-websphere");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope3");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 3);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "wasadmin");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");
 entry.setProperty(DiscoveryAccessEntry.
 PROPERTY_TRUSTSTOREFILECONTENTS, new byte[] { 0x10, 0x20, 0x30 });
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_TRUSTSTOREPASSPHRASE,
 "password");
 entry = api.updateDiscoveryAccessEntry(entry);

 // SNMP access entry
 entry = new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_SNMP,
 "user4-snmp");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope4");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 4);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_COMMUNITYSTRING, "public");
 entry = api.updateDiscoveryAccessEntry(entry);

 // SNMPv3 access entry
 entry = new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_SNMPV3,
 "user5-snmpv3");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope5");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 5);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "snmp");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_AUTHPROTOCOL, "MD5");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PRIVPASSWORD,

Chapter 1. SDK Developer's Guide 55

 "privpassword");
 entry = api.updateDiscoveryAccessEntry(entry);

 // Cisco access entry
 entry = new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_CISCO,
 "user6-cisco");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope6");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 6);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "cisco");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");
 entry.setProperty("enablepassword", "enablepassword");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ENABLEPASSWORD,
 "enablepassword");
 entry = api.updateDiscoveryAccessEntry(entry);

 // ccmsserver access entry
 entry = new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_
 CCMSSERVER, "user7-sapccms");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope7");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 7);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "ccms");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_CLIENTID, "clientid");
 entry = api.updateDiscoveryAccessEntry(entry);

 // Computer system access entry
 entry = new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_HOST,
 "user1-host");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope1");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 1);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "root");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");
 entry = api.updateDiscoveryAccessEntry(entry);

 // Windows computer system access entry
 entry = new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_
 WINDOWSHOST, "user2-winhost");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope2");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 2);
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "Administrator");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_AUTHTYPE,
 "authType_default");
 entry = api.updateDiscoveryAccessEntry(entry);
 } catch (ApiException ae) {
 System.err.println("api exception:" + ae);
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 }

3. The following example Java code shows how to get all discovery access entries:

try {
 DiscoveryAccessEntry entry;
 DiscoveryAccessEntry[] entries = api.getAllDiscoveryAccessEntries();
 for (int i = 0; i < entries.length; i++) {
 entry = entries[i];
 String authClassName = (String) entry.getAuthClassName();
 Integer order = (Integer) entry.getProperty(DiscoveryAccessEntry.
 PROPERTY_ORDER);
 switch (order.intValue()) {
 case 1:
 // DiscoveryAccessEntry.AUTHCLASS_HOST.equals(authClassName));
 break;
 case 2:
 // DiscoveryAccessEntry.AUTHCLASS_WINDOWSHOST.equals(authClassName));
 break;
 case 3:
 // DiscoveryAccessEntry.AUTHCLASS_WEBSPHERE.equals(authClassName));
 break;
 case 4:
 // DiscoveryAccessEntry.AUTHCLASS_SNMP.equals(authClassName));
 break;
 case 5:
 // DiscoveryAccessEntry.AUTHCLASS_SNMPV3.equals(authClassName));
 break;
 case 6:
 // DiscoveryAccessEntry.AUTHCLASS_CISCO.equals(authClassName));
 break;
 case 7:
 // DiscoveryAccessEntry.AUTHCLASS_CCMSSERVER.equals(authClassName));

56 Application Dependency Discovery Manager: SDK Developer's Guide

 break;
 default:
 break;
 }
 } catch (ApiException ae) {
 System.err.println("api exception:" + ae);
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 }

4. The following example Java code shows how to get a specific discovery access entry:

try {
 DiscoveryAccessEntry entry = api.getDiscoveryAccessEntry
 (DiscoveryAccessEntry.AUTHCLASS_SNMP, "user4-snmp");
 String authClassName = (String) entry.getAuthClassName();
 String name = (String) entry.getName();
 } catch (ApiException ae) {
 System.err.println("api exception:" + ae);
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 }

5. The following example Java code shows how to update a specific discovery access entry:

try {
 // Create an entry with the same name as an existing entry
 DiscoveryAccessEntry entry = new DiscoveryAccessEntry
 (DiscoveryAccessEntry.AUTHCLASS_HOST, "user1-host");

 // Change the scope
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_SCOPENAME, "scope1c");

 // Change the order
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 2);

 // Change the username
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_USERNAME, "rootc");

 // Change the password
 entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "passwordc");

 // Update the entry
 entry = api.updateDiscoveryAccessEntry(entry);
} catch (ApiException ae) {
 System.err.println("api exception:" + ae);
} catch (Exception ex) {
 System.err.println("exception:" + ex);
}

6. The following example Java code shows how to verify a discovery access entry:

try {
// Create an entry with the same name as the existing entry to verify
DiscoveryAccessEntry entry =
 new DiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_HOST, "user1-host");

// Set the order property to the wrong number
entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 1);

// This result should be false
boolean result = api.verifyDiscoveryAccessEntry(entry));

// Set the order property to the correct number
entry.setProperty(DiscoveryAccessEntry.PROPERTY_ORDER, 2);

// This result should be true
result = api.verifyDiscoveryAccessEntry(entry));

// Set the password property to the wrong value
entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "password");

// This result should be false
result = api.verifyDiscoveryAccessEntry(entry));

// Set the password property to the correct value
entry.setProperty(DiscoveryAccessEntry.PROPERTY_PASSWORD, "passwordc");

// This result should be true

Chapter 1. SDK Developer's Guide 57

 result = api.verifyDiscoveryAccessEntry(entry));
} catch (ApiException ae) {
 System.err.println("api exception:" + ae);
} catch (Exception ex) {
 System.err.println("exception:" + ex);
}

7. The following example Java code shows how to delete a discovery access entry:

try {
 api.deleteDiscoveryAccessEntry(DiscoveryAccessEntry.AUTHCLASS_HOST,
 "user1-host");
} catch (ApiException ae) {
 System.err.println("api exception:" + ae);
} catch (Exception ex) {
 System.err.println("exception:" + ex);
}

Managing collections
Collection methods manage collections in the Common Data Model. You can use the collection methods
to add and remove members in a collection, and to retrieve all collections to which a specific managed
element belongs. Note that these methods are deprecated. For equivalent methods related to
CustomCollections see the description of each deprecated method.

For related information, see “Managing grouping patterns” on page 74.

The Collection methods table describes the collection methods you can use.

Table 15. Collection methods

Method Description

addCollectionMembers(Guid
collectionGuid, Guid[] guids)

Add members to a collection. This method is
unavailable in the Enterprise JavaBeans (EJB)
interface.

This method is deprecated. Use
updateGroupingPattern(GroupingPattern
groupingPattern) method followed by one of
runPatternNow(...) methods instead.

findCollections(Guid guid, String[]
permissions)

Retrieve all collections to which the specified
managed element belongs. A collection can
contain other collections, but this method returns
only the first-level of collection to which the
specified managed element belongs.

This method is deprecated. Use
findCustomCollections(Guid guid, String[]
permissions) method instead.

removeCollectionMembers(Guid
collectionGuid, Guid[] guids)

Remove members from a collection. Members of a
collection can be removed by specifying an array of
collection GUID attributes or an array of managed
element GUID attributes. When a member to be
removed is not currently a member of the
collection, the member is ignored.

This method is deprecated. Use
updateGroupingPattern(GroupingPattern
groupingPattern) method followed by one of
runPatternNow(...) methods instead.

58 Application Dependency Discovery Manager: SDK Developer's Guide

Managing the model
Model methods manage objects in the Common Data Model. You can use the model methods to add,
delete, and update objects within the Common Data Model. You can also use the methods to compare
objects, and to rebuild the derived data, such as dependencies, relationships and data consolidation.

Table 16 on page 59 describes the model methods you can use.

Table 16. Model management methods

Method Description

add(ModelObject[] obj, Guid mss) Add a new object to the database.

Note: This method cannot be used to add
GroupingPattern or Selector model objects. It
throws ApiException when any of the provided
objects is of the GroupingPattern or Selector type.
Use GroupingPattern API for all operations on
GroupingPatterns or selectors.

addArrayElements(Guid object, String
attrName, Guid[] elements, Guid mss)

Add the elements to the named array of the
specified object without fetching either the object
or the array.

compare(ModelObject left,
ModelObject[] right, CompareOptions
opts)

compare(ObjectRef obj1, ObjectRef[]
objs, CompareOptions opts)

Compare a model object (or golden master) against
a set of objects.

Chapter 1. SDK Developer's Guide 59

Table 16. Model management methods (continued)

Method Description

delete(Guid[] guids, Guid mss)

delete(ModelObject[] obj, Guid mss)

Delete the objects specified by the GUID from the
database and cascade delete all objects contained
within the objects in either of the following cases:

• No Management Software System (MSS) is
provided.

• The object is owned exclusively by the specified
MSS.

The object is not deleted when an MMS is provided
and the object is owned by another MSS. Instead,
the association between the object and MSS is
deleted.

When an object is deleted from the TADDM
database, all relationships and collection
memberships associated with the object are also
deleted.

If the specified object is a top-level model object,
all contained objects are also removed. For
example, when a computer system is removed, the
operating system and IP interfaces contained
within the object, along with the relationships
between the computer system and IP interfaces,
are also removed.

Note: This method cannot be used to delete
GroupingPattern or Selector model objects. It
throws ApiException when any of the provided
objects is of the GroupingPattern or Selector type.
Use GroupingPattern API for all operations on
GroupingPatterns or selectors.

60 Application Dependency Discovery Manager: SDK Developer's Guide

Table 16. Model management methods (continued)

Method Description

deleteStale(Guid mss, long date)

Note: This method is deprecated.

Delete managed elements and relationships that
have not been touched since a specified date. The
managed elements and relationships that have an
update time stamp less than or equal to the
specified date are deleted.

If a stale managed element or relationship is
owned by more than one management software
system, the managed element or relationship is not
deleted from the database. Only the association is
deleted between the managed element or
relationship and the specified management
software system. However, if a stale managed
element or relationship is owned only by the
specified management software system, the
managed element or relationship is deleted from
the database. All relationships and collection
memberships associated with a deleted managed
element are also deleted.

If the specified object is a top-level model object,
all contained objects are also removed. For
example, when a computer system is removed, the
operating system and IP interfaces contained in
the object, along with the relationships between
the computer system and IP interfaces, are also
removed.

 refresh(Guid mss, long date) Delete managed elements and relationships that
have not been stored since a specified date. The
managed elements and relationships that have an
update time stamp less than the specified date are
deleted.

If a stale managed element or relationship is
owned by more than one management software
system, the managed element or relationship is
still deleted from the database. All relationships
and collection memberships associated with a
deleted managed element are also deleted.

If the specified object is a top-level model object,
all contained objects are also removed. For
example, when a computer system is removed, the
operating system and IP interfaces contained in
the object, along with the relationships between
the computer system and IP interfaces, are also
removed.

endBulkload(long bulkloadId) Mark the end of a bulkload operation. Each caller
that calls the startBulkload() method must
call endBulkload() to release the lock on the
storage subsystem.

Chapter 1. SDK Developer's Guide 61

Table 16. Model management methods (continued)

Method Description

exportData(File directoryToWriteTo,
long maxFileSize, Guid mss)

Export all objects in the TADDM database to the
specified directory, creating files for each object
class using the find() method with infinite depth.
When maxFileSize bytes are exceeded, a new file is
created using a .N extension, with N incremented
as required. The format of the output adheres to
the XML schema format.

importData(URI source, boolean
rebuildTopo, Guid mss)

Convert XML data from the specified source into
model objects which are updated within the
TADDM database, according to the following rules:

• When the source is a file, the contents of the
single file are read and inserted.

• When the source is a directory, each file in the
directory is imported.

• When the source is a remote object, such as an
HTTP address, each update operates within its
own transaction.

Errors roll back the update of the current object
only, and the import then proceeds.

rebuildTopology() Rebuild the TADDM database derived data, such as
dependencies, relationships and data
consolidation. During this operation, the entire
database is locked against updates.

removeArrayElements(Guid object,
String attrName, Guid[] elements, Guid
mss)

Remove the specified elements of the given object
from the named array in the TADDM database
without fetching either the object or the array to
the client.

startBulkload(long timeoutInSeconds) Lock the storage subsystem from other changes to
the database, including discoveries and
synchronizations. You must call this method before
performing major updates. The lock remains until
the endBulkload() method is called.

62 Application Dependency Discovery Manager: SDK Developer's Guide

Table 16. Model management methods (continued)

Method Description

update(ModelObject obj, mss)

update(ModelObject[] obj, mss)

Update or insert a model object into the database.
Attributes which are set in the source object are
merged in the destination, while attributes which
are not set are not updated. When an object with
the specified type and key does not exist, a new
object is created within the database.

Note the following details:

• The new object must have either its GUID or a
key set. When a key refers to a parent object, the
parent object must exist. An empty object with
only the GUID set is enough to identify a parent.

• When the source object directly references a
GUID, it is the developer's responsibility that the
GUID exists in the TADDM database.

• When the mss GUID is null, the objects are
inserted or updated in the TADDM database and
no MSS-Object link is updated. When the mss
GUID is not null, the MSS-Object link is updated.

• It might be necessary to rebuild the topology to
automatically infer dependencies and explicit
relationships for the new object.

• Arrays are replaced in their entirety.

Note: This method cannot be used to update
GroupingPattern or Selector model objects. It
throws ApiException when any of the provided
objects is of the GroupingPattern or Selector type.
Use GroupingPattern API for all operations on
GroupingPatterns or selectors.

updateXML(String xml, Guid mss) Same as update(ModelObject[] obj, mss) except
that the objects are represented as an XML string.

Note: This method cannot be used to update
GroupingPattern or Selector model objects. It
throws ApiException when any of the provided
objects is of the GroupingPattern or Selector type.
Use GroupingPattern API for all operations on
GroupingPatterns or selectors.

Example

This example illustrates how to compare objects.

//Find two comparable objects to compare first.

ModelObject mo[] = api.find(
 "SELECT * FROM SunSPARCUnitaryComputerSystem", 3, null, null);

if (mo != null) {
 if (mo.length > 1) {
 ModelObject mo1 = mo[0];
 ModelObject mo2 = mo[1];

 try {
 System.out.println("Comparing " + mo1.getDisplayName() +

Chapter 1. SDK Developer's Guide 63

 " to " + mo2.getDisplayName());
 } catch (Exception e) {
 e.printStackTrace();
 }

 // ObjectRef is a simple data structure that contains the GUID and the
 // version of the object to be compared.

 ObjectRef objectRef2 = new ObjectRef(mo2.getGuid(), 0);
 ComparisonResult result = api.compare(new ObjectRef(mo1.getGuid(), 0),
 new ObjectRef[]{objectRef2},
 new CompareOptions(true));
 handleModel((TreeTableModel)result);
 }
}

public void handleModel(TreeTableModel model) {
 CompareResultRow row = model.getRoot();
 handleRow(model, row, "");
}

private void handleRow(
 TreeTableModel model, CompareResultRow row, String attributeName){
 System.out.println("Handling row " + row);

 int nColumns = model.getColumnCount();

 for (int i = 0; i < nColumns; i++) {
 String columnName = model.getColumnName(i);
 Object value = model.getValueAt(row, i);
 System.out.println("Col Name " + columnName + " value " + value);

 //First column, this is the attributeName
 if (i == 0) {
 if (!"".equals(attributeName)) {
 attributeName = attributeName + ":" + String.valueOf(value);
 } else {
 attributeName = String.valueOf(value);
 }
 }

 // Calculate the column name and persist to db here.
 }

 List children = row.getChildren();

 if (children != null) {
 Iterator it = children.iterator();
 while (it.hasNext()) {
 CompareResultRow resultRow = (CompareResultRow) it.next(); //recurse
 handleRow(model, resultRow, attributeName);
 }
 }
}

Managing relationships
Relationship methods manage relationships between objects in the Common Data Model. You can use the
relationship methods to add and delete relationships between managed elements in the Common Data
Model. You can use this method to retrieve a relationship graph for a given relationship type.

Table 17 on page 64 describes the relationship methods you can use.

Table 17. Relationship methods

Method Description

addRelationships(Relationship[]
relationships, Guid mss)

Add one or more relationships to the TADDM
database. The source and target managed
elements of a relationship must exist before adding
a relationship between the elements. A
relationship instance cannot exist in the TADDM
database by itself. It must be discovered or owned
by one or more Management Software Systems
(MSS).

64 Application Dependency Discovery Manager: SDK Developer's Guide

Table 17. Relationship methods (continued)

Method Description

deleteRelationships(Guid[] guids, Guid
mss)

deleteRelationships(String type, Guid
source, Guid target, Guid mss)

Remove one or more relationships from TADDM
database, in either of the following cases:

• When no Management Software System is
specified

• When a relationship is owned only by the
specified MSS

The relationship is not deleted when an MSS is
specified and a relationship is owned by another
MSS. In this case, only the association between the
relationship and the MSS is deleted.

findRelationships(Guid
managedElementGuid, int direction,
String type, int scope, String[]
permissions)

Retrieve the relationship graph for the given
relationship type starting from the specified
managed element. The relationships that are
stored in the TADDM database can be traversed in
the following directions:

• Starting from a source managed element and
going forward

• Starting from a target managed element and
going backward

findRelationships(Guid[] sourceGuids,
Guid[] targetGuids, String[] types,
int comparisonFlags)
findrelationships(managedElementGuid
=>
findRelationships(managedElementGuid

Retrieves relationships with only basic information
returned. This method runs more quickly than the
findrelationships(managedElementGuid,
direction, type, scope, permissions)
method.

Managing sessions
Session methods establish connections and sessions with the server. You can use the session methods to
open and close sessions with the TADDM server, and retrieve the current connection.

Table 18 on page 65 describes the session methods you can use.

Table 18. Session methods

Method Description

close() Close a session.

ApiFactory.getInstance().getApiConnect
ion (String host, int port, String
trustStoreLocation, boolean useSSL)

Create a connection using the specified host and
port. If the specified port value is -1, the default
port specified in the collation.properties file
is used.

The trustStoreLocation parameter specifies the
location of the certificate file to use for SSL
connections.

ApiFactory.getInstance().getSession
(ApiConnection conn, String user,
String password, long version)

Return a Session object, which is used to execute
TADDM API methods.

Chapter 1. SDK Developer's Guide 65

Table 18. Session methods (continued)

Method Description

ApiFactory.getInstance().getSession
(ApiConnection conn, long sessionId,
long version)

Return a Session object, which is used to execute
TADDM API methods.

release() This method is not supported, use the close()
method

Examples

Connecting to the TADDM server involves establishing a connection to the server and logging in with a
user account and password to establish a session. The following example illustrates how to establish a
connection to the server:

private ApiConnection conn_;
 try {
 conn_ = ApiFactory.getInstance().getConnection(
 "host.abcxyz.com", //host name
 9433, //port number
 null, //Location of jssecacerts.cert file for SSL
 false); //true for SSL, false for non SSL
 } catch (Throwable th) {
 th.printStackTrace();
}

Alternatively, you can establish an SSL connection, as illustrated by the following:

private ApiConnection conn_;
 try {
 conn_ = ApiFactory.getInstance().getConnection(
 "host.abcxyz.com", //host name
 9433, //port number
 “c:\\temp\\jssecacerts.cert”, //Location of jssecacerts.cert file for SSL
 true); //true for SSL, false for non SSL
 } catch (Throwable th) {
 th.printStackTrace();
}

The TADDM server uses port 9433 by default, though you can specify alternative port by specifying
appropriate value in $COLLATION_HOME/etc/collation.properties file.

When establishing an SSL connection, you must specify the location of the jssecacerts.cert file.
Download this file from the TADDM server Java Web Portal, accessible at http://
server_name:web_server_port, for example http://localhost:9430.

After the ApiConnection is established, log in to the server to establish a session, as illustrated by the
following example:

 String user = "smartoperator"; // login user name
 String password = "foobar"; // user password
 long version = 0; // version
 ApiSession session_ = ApiFactory.getInstance().getSession(conn_, user, password,
 version);
 CMDBApi api = session_.createCMDBApi();

CMDBApi is the remote reference to perform all API related operations on the TADDM server.

Managing transactions
The transaction API has been deprecated.

The following methods will only log warning messages and transactions will not be started, committed, or
rolled back:

beginTransaction()

66 Application Dependency Discovery Manager: SDK Developer's Guide

beginTransaction(int timout)

commitTransaction()

rollbackTransaction()

Managing versions
Version methods manage TADDM database data versions. You can use the version methods to create
named snapshots of the current TADDM database data, delete versions, and list the defined versions
available.

Table 19 on page 67 describes the version methods you can use.

Table 19. Version methods

Method Description

createEmptyVersion(name, description) Create an empty version with no data.

createVersion(name, description) Create a named snapshot of the current TADDM
database data.

deleteVersion(versionID) Delete the specified version from the TADDM
database.

getAllVersions() Return the names of all defined TADDM database
data versions.

getVersion() Return the TopologyVersion object of the current
version of the displayed TADDM database data.

Metadata
Metadata methods manage metadata in the Common Data Model. You can use the metadata methods to
add, update, or remove extended attributes, and to set the associated values. You can also use the
methods to return metadata information within the Common Data Model including the number, types, and
names of all attributes in a model object.

Table 20 on page 67 describes the metadata methods you can use.

Table 20. Metadata methods

Method Description

defineExtendedAttributeMeta(UserDataMe
ta udm)

Adds or updates extended attributes meta.

getAllMetaData() Returns metadata about Common Data Model
without its Simplified Model part. It shows no
classes of the Simplified Model and no moves or
changes of attributes and relations.

getAllMetaData(boolean flatten, Locale
locale, boolean skipSimplifiedModel)

Returns all metadata. This method is equivalent to
find("ObjectClass", ...) where a cache of metadata
is used on the server for faster access.

getClassNames() Returns an array of model class short names, fully
qualified name pairs.

Chapter 1. SDK Developer's Guide 67

Table 20. Metadata methods (continued)

Method Description

getExtendedAttributeMeta(String
classname)

Retrieves extended attribute meta for a class. The
method retrieves both taddm_global and custom
category extended attributes meta. The
UserDataMeta objects are collected from the
specified class and all the elements that are higher
in hierarchy than the specified class.

getExtendedAttributes(Guid objGuid) Retrieves extended attribute values for an object.

Note: This method is deprecated.

getMetaData(String className) Returns the number, types, and names of all
attributes in the model object. This method
includes key/name rule, containment, relationship,
and enumerated type information.

removeExtendedAttributeMeta(String
classname, Guid acct)

Removes class-wide extended attributes or
extended attributes for a specified class and
account.

Note: This method is deprecated.

setExtendedAttributes(Guid objGuid,
AttrNameValue[]

Sets the values of the extended attributes.

Note: This method is deprecated. Use the objects
XA attribute instead.

Presentation
Presentation methods determine affected systems and return topology information. You can use the
presentation methods to determine affected business applications and services based on specific
configuration items. You can also use the methods to return model object details, graphs, and topologies.

Table 21 on page 68 describes the presentation methods you can use.

Table 21. Presentation methods

Method Description

findImpactedBusinessApplications(Guid[
] objects)

Determine the business applications that are
affected based on the specified array of
Configuration Items.

findImpactedBusinessServices(Guid[]
objects)

Determine the business services that are affected
based on the specified array of Configuration
Items.

getDetailsPanel(ObjectRef ref) Return the details panel for the specified object
reference. An object reference is the combination
of the object GUID and the version.

getGraphView(ViewDefiner graphView) Return a graph for the specified ViewDefiner that
describes the graph view.

68 Application Dependency Discovery Manager: SDK Developer's Guide

Table 21. Presentation methods (continued)

Method Description

getGraphViewImage(ViewDefiner
graphView)

Note: This method is deprecated.

Return an ImageStream object for the specified
ViewDefiner that describes the graph view.

getTreeView(ViewDefiner treeView) Return a TopologyTreeModel object for the
specified ViewDefiner that describes the tree view.

Example Java code

• The following example Java code illustrates how to retrieve the details panel for objects using the
GUID.

Note:

– GUID is a unique identifier, used to identify objects while storing the objects in the database.
– ObjectRef is a simple data structure that holds the GUID and the version of the object you are

interested in retrieving the details panel for.
– You can retrieve the GUID for the object you need by entering a command similar to the following

command. This particular command gives you a list of all objects associated with ComputerSystem.

SELECT * FROM ComputerSystem

ModelObject mo[] = api.find(
 "SELECT * FROM ComputerSystem",
 1,
 null,
 null);

if (mo != null) {
 for (int i=0; i<mo.length; i++){
 Guid guid = mo[i].getGuid();
 System.out.println("Getting details panel for " + guid);
 DetailPanelModel model = api.getDetailsPanel(
 new ObjectRef(guid,0)); //guid and version
 System.out.println("model is " + model);
 }
}

• The following example illustrates how to retrieve graph views.

The enumeration of graphs and trees are defined in the
com.collation.proxy.api.presentation.common.ViewDefinerEnum class.

ViewDefiner viewDefiner = new ViewDefiner(
 ViewDefinerEnum.GRAPH_APPLICATION_PHYSICAL_INFRASTRUCTURE,
 VersionedObject.DYNAMIC);
TopologyGraphModel gv = api.getGraphView(viewDefiner);

• The following example illustrates how to find impacted business services and applications:

// Find the objects for the impact analysis

ModelObject mo[] = api.find("SELECT * FROM ApacheServer", 1, null, null);

if (mo != null) {
 Application[] applications = api.findImpactedBusinessApplications(
 new Guid[]{mo[0].getGuid()});

 if (applications != null) {
 for (int i=0;i<applications.length;i++) {
 System.out.println(applications[i].getDisplayName());
 }
 }

Chapter 1. SDK Developer's Guide 69

 BusinessSystem[] systems = api.findImpactedBusinessServices(
 new Guid[]{mo[0].getGuid()});
 if (systems != null) {
 for (int i=0;i<systems.length;i++) {
 System.out.println(systems[i].getDisplayName());
 }
 }
}

Security
Security methods manage permissions, entitlements, and roles within the TADDM database. You can use
the security methods to add and remove permissions, and determine the permissions and entitlements of
specific users. You can also use the methods to determine the roles assigned to a user and determine
whether a user has the access to one or more runtime operations.

Note: Security methods operate on CustomCollection objects with hierarchyType attribute set to
"AccessCollection". They do not support old AccessCollection objects.

Table 22 on page 70 describes the security methods you can use.

Table 22. Security methods

Method Description

addAccess(Principal user, Resource
resource, String role, String[]
permissions)

Add permission for a specific object to a role.

addRuntimeAccess(Principal user,
String role, String[] permissions)

Add permission for one or more runtime operations
to a role.

assignPersonInRoleToAccessCollection
(Person user, Role role, Guid[] guids,
long[] versionId)

Create an assignment (in potentially multiple
versions) between a person in a role and a list of
access collections.

deleteAccess(Principal user, Resource
resource, String role, String[]
permissions)

Delete a permission for a specific collection from a
role.

deleteRuntimeAccess(Principal user,
String role, String [] permissions)

Delete permission for one or more runtime
operations from a role.

getAccessDecisions(Principal user,
Resource[] resources, String[]
permissions)

Determine whether the caller can access one or
more objects with the specified permission.

getDataPermissions(Principal user,
Resource[] resources)

Determine the data-level permissions that a user
has for a set of objects.

getEntitlements(Principal user,
String[] permissions)

Retrieve entitlements for the user. The
entitlements are the objects that the user can
access, based on the defined security policies.

getRoles(Principal user) Retrieve the roles assigned to a user.

getRuntimeAccess(Principal user) Retrieve permissions for runtime operations for a
user.

70 Application Dependency Discovery Manager: SDK Developer's Guide

Table 22. Security methods (continued)

Method Description

getRuntimeAccessDecisions(Principal
user, String[] permissions)

Determine if a user has access to one or more
runtime operations.

removePersonInRoleToAccessCollection
(Person user, Role role, Guid[] guids,
long[] versionId)

Remove an assignment in potentially multiple
versions based on the specified person, role, and
list of access collections to which the person-in-
role is assigned.

addAccess(Principal user,
AccessDefinition[] accessDefinition)

Add one or more objects (each with a set of
permissions) to a role, as specified by each
AccessDefinition object.

addDataPermissionToRole(String role,
String permission)

Add a data permission to a role wherever the role
exists in the stored policies.

addRuntimePermissionToRole(String
role, String permission)

Add a runtime permission to a role.

deletePermission(String permission) Remove a permission wherever the permission
exists in the stored policies.

deletePermissionFromRole(String role,
String permission)

Remove a permission from a role wherever the role
exists in the stored policies.

deleteRole(String role) Remove a role wherever the role exists in the
stored policies.

getEntitlementsForRole(Principal user,
String role)

Retrieve entitlements for the user in a specified
role.

Managing application templates
Application template methods enable the creation, modification, deletion, and retrieval of application
templates and rules.

Important: This API is deprecated for TADDM 7.3 and later. The GroupingPatternAPI can be used to
manage Business Services. This API provides methods for creation, modification and deletion of Grouping
Patterns. For more information, see “Managing grouping patterns” on page 74.

Application templates specify the MQL rules that are periodically applied to the TADDM database to
define business applications or collections. Each template specifies one or more rules with the following
attributes:
MQLRuleName

The name of the MQL rule. This attribute is required.
FunctionalGroupName

The object the functional group contains that the MQL query returns. This attribute is required for any
rule that defines a business application. It is not used for collections that rules define.

MQLQuery
The MQL query to run. The objects the query returns are added to the business application or
collection.

Table 23 on page 72 describes the application template methods that you can use.

Chapter 1. SDK Developer's Guide 71

Table 23. Application template methods

Method Description

createAppTemplate(String name, String
type, boolean removeNonMembers,
MQLRule[] operators)

Creates a template with the specified rules. The
following parameters are available:
name

The name of the application template to create.
type

The type of template to create (application or
collection or service). Valid values are
"Application" for Business Application or
"Collection" for Collections or "Service" for
Business Service.

removeNonMembers
A Boolean value that specifies whether existing
objects in the business application or collection
can be removed if they no longer match the
template rules.

MQLRule
An array that contains one or more rules.

updateAppTemplate(String name, String
type, boolean removeNonMembers,
MQLRule[] operators)

Updates a template with the specified rules. The
following parameters are available:
name

The name of the application template to
update.

type
The type of template to update (application or
collection or service). Valid values are
"Application" for Business Application or
"Collection" for Collections or "Service" for
Business Service.

removeNonMembers
A Boolean value that specifies whether existing
objects in the business application or collection
can be removed if they no longer match the
template rules.

MQLRule
An array that contains one or more rules.

getAllAppTemplates() Retrieves all application templates.

getAppTemplate(String name, int type) Retrieves the application template for specified
name and type.

removeAppTemplate(String name, int
type)

Removes the application template for specified
name and type.

removeMQLRule(String name) Removes an MQL rule. A rule can be removed only
if it is not associated with any application
templates.

Creating a business application template

To create an application template for a business application, complete the following steps:

72 Application Dependency Discovery Manager: SDK Developer's Guide

1. Create a business application and set the name of the new business application to the name passed on
the command line, for example, TADDM - Production. Get the GUID returned.

2. Set the name of the application template using the following format:

business_app_GUID:business_app_name

For example,

AA0A20EE5BBD336481279CA664FB380A:TADDM - Production

3. Prefix the rule names with the GUID of the business application, but ensure that you do not include a
colon in the rule name, for example

AA0A20EE5BBD336481279CA664FB380Adatabase

Example: Creating a business application template

The following example creates a business application template, the MQL rules, and the associated
business application:

create Business Application with name "TADDM - Production"
BAname = "TADDM - Production"

get guid of Business Application
myBA = ModelFactory.newInstance(Class.forName
("com.collation.platform.model.topology.app.Application"))
myBA.setName(BAname)
appGuid = api.update(myBA,None)
MQLRuleClass = Class.forName("com.collation.platform.model.apptemplate.MQLRule")
rules = [ModelObjectFactory.newInstance(MQLRuleClass)]

create required by TADDM MQLRule name like AA0A20EE5BBD336481279CA664FB380Adatabase
rulename = "database"
RuleName= str(appGuid) + rulename
asQuery="select * from AppServer "
rules[0].setMQLRuleName(RuleName)
rules[0].setFunctionalGroupName("App Servers")
rules[0].setMQLQuery(asQuery)

create required by TADDM AppTemplate name like
AA0A20EE5BBD336481279CA664FB380A:TADDM - Production
appTemplateName= str(appGuid) + ":" + BAname
appTemplate = api.createAppTemplate(appTemplateName, "APPLICATION", True,
jarray.array(rules,MQLRuleClass));

Example: Listing business applications

The following example lists business applications:

query = "select * from Application"
data = api.executeQuery(query, None, None)
while (data.next()):
 print data.getXML(4)

Example: Removing a business application template

The following example removes an application template, the MQL rules, and the associated business
application.

Get application template
appTemplate = api.getAppTemplate(nameBA, 0)

Get rules of the application template
rules = appTemplate.getMQLRules()

Chapter 1. SDK Developer's Guide 73

Remove application template -> removes just AppTemplate object
api.removeAppTemplate(appTemplate.getAppTemplateName(),
appTemplate.getAppTemplateType())

Remove all rules
for rule in rules:
rule = api.find(rule.getGuid(), 1, None)
api.removeMQLRule(rule.getMQLRuleName())

Remove business application
businessApp = api.find("Select * from Application where name =='" +
appTemplate.getAppTemplateName()+ "'", False, None, None)
api.delete(businessApp, None)

Managing grouping patterns
Grouping pattern methods enable creation, modification, deletion, and retrieval of grouping patterns
together with their selectors.

For details, see the Managing grouping patterns by using Java API topic in the TADDM User's Guide.

Using the SOAP API
The Simple Object Access Protocol (SOAP) API exposes elements of the TADDM API as a web service.

Using the SOAP API, you can develop applications across a range of development environments and
operating systems supporting integration with management applications including ITSM Process
Managers.

The SOAP API provides control over the discovery process and aspects of the Common Data Model
including access to the resulting model data. The SOAP API delegates requests to the Java API. The Java
API can create applications that add, update, and delete model objects. You can query model objects by
class name or object ID number.

You can use the SOAP API control to create applications that add, update, and delete model objects.
SOAP can query model objects by class name or object ID number. You can also use the interface to
examine the change history and manage versions.

Request summary

The SOAP API offers access to the TADDM application maps, including the discovered applications, their
components, and configurations.

The SOAP API can be summarized using the following categories, which are explained in detail in their
appropriate sections:

• Session requests
• Discovery requests
• Managing the model and metadata
• Find requests
• Change history requests
• Managing versions

Session requests
Session requests enable you to manage sessions with the TADDM server.

You can use the session requests to login and logout on the TADDM server. Table 24 on page 75
describes the session requests you can use.

74 Application Dependency Discovery Manager: SDK Developer's Guide

Table 24. Session requests

Operation Input Output

login

(Log in to the TADDM server)

loginRequest

user
The user name registered
with the TADDM server

password
The password associated
with the user

host
The name of the host, either
as a name, or as an IP
address (using dot notation)

port
The port number of the server

loginReponse

logout

(Log out from the server)

logoutRequest logoutReponse

Example

The following example shows a login XML request:
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:login soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://localhost">
 <ns1:arg0 xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">smartoperator</ns1:arg0>
 <ns1:arg1 xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">foobar</ns1:arg1>
 <ns1:arg2 xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">localhost</ns1:arg2>
 </ns1:login>
 </soapenv:Body>
</soapenv:Envelope>

The following example shows the login XML response:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:loginResponse soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://localhost">
 <loginReturn xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">1149902064172</loginReturn>
 </ns1:loginResponse>
 </soapenv:Body>
</soapenv:Envelope>

Discovery requests
Discovery methods enable you to manage discovery runs.

You can use the discovery requests to start and stop discoveries, get the status of a discovery, and clear
all discovery elements from the topology. Table 25 on page 76 describes the discovery requests you can
use.

Chapter 1. SDK Developer's Guide 75

Table 25. Discovery requests

Operation Input Output

abortDiscovery

(Abort the currently running
discovery)

abortDiscoveryRequest abortDiscoveryResponse

clearTopology

(Clear all discovery elements and
relationships from the topology)

clearTopologyRequest clearTopologyResponse

getStatus

(Get the current discovery run
status)

getStatusRequest getStatusResponse

getStatusReturn—String
representation of current
discovery run status

rebuildTopology

(Rebuild the topology, including
dependencies and relationships)

rebuildTopologyRequest rebuildTopologyResponse

startDiscovery

(Start a discovery using the
specified scope)

startDiscoveryRequest

scope
The scope of the discovery:
scope set or scope group
name.

runName
The name of the discovery
run.

startDiscoveryResponse

startDiscoveryRetID

(Start a discovery using the
specified scope)

startDiscoveryRequest

scope
The scope of the discovery:
scope set or scope group
name.

runName
The name of the discovery
run.

startDiscoveryResponse

run ID

Managing the model and metadata
Model and metadata requests manage objects and query metadata in the Common Data Model. You can
use the model requests to insert, import, and export objects in the Common Data Model. You can use the
metadata request to get all class names in the model that can be used in the query language.

Table 26 on page 77 describes the model and metadata requests you can use.

76 Application Dependency Discovery Manager: SDK Developer's Guide

Table 26. Model and metadata requests

Operation Input Output

exportData

(Export all top level objects in the
TADDM database to a specified
directory in XML format)

exportDataRequest

directoryToWriteTo
The name of the directory to
which the data is to be
exported

maxfilesize
The maximum file size to
export

mssGuid
The GUID of the Management
Software System (MSS)

exportDataResponse

exportDataUsingMssName

(Export all top-level objects in
the TADDM database to a
directory, in XML format,
specifying the MSS using a name)

exportDataUsingMss
NameRequest

directoryToWriteTo
The name of the directory to
which the data is to be
exported

maxfilesize
The maximum file size to
export

mssGuid
The GUID of the Management
Software System (MSS)

exportDataUsingMss
NameResponse

getClassNames

(Get all class names in the model
that can be used in the query
language)

getClassNamesRequest getClassNamesResponse

getClassNamesReturn: Array
of model class short name/fullly
qualified name pairs

importData

(Convert XML data from the
specified source into model
objects and update the TADDM
database)

importDataRequest

source
The source from which to
import the data

rebuildTopo
A Boolean to rebuild the
topology

mssGuid
The GUID of the Management
Software System (MSS)

importDataResponse

Chapter 1. SDK Developer's Guide 77

Table 26. Model and metadata requests (continued)

Operation Input Output

importDataUsingMssName

(Convert XML data from the
specified source into model
objects and update the TADDM
database, specifying
Management Software System by
name)

importDataUsingMss
NameRequest

source
The source from which to
import the data

rebuildTopo
A Boolean to rebuild the
topology

mssName
The name of the Management
Software System (MSS)

importDataUsingMss
NameResponse

insert

(Insert or update the model
object, specified in XML format,
in the TADDM database)

insertRequest

xml
The model object in XML
format

mssGuid
The GUID of the Management
Software System (MSS)

insertResponse

insertUsingMssName

(Insert the model object,
specified in XML format,
specifying the Management
Software System by name)

insertUsingMss
NameRequest

xml
The model object in XML
format

mssName
The name of the Management
Software System (MSS)

insertUsingMss
NameResponse

Example

The following example shows a getClassNames XML request:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:getClassNames soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://localhost"/>
 </soapenv:Body>
</soapenv:Envelope>

The following example shows the getClassNames XML response:

GETCLASSNAME (response):
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:getClassNamesResponse soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://localhost">
 <getClassNamesReturn xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">
 AbstractResource,
 com.collation.platform.model.topology.process.AbstractResource,

78 Application Dependency Discovery Manager: SDK Developer's Guide

 Accepts,
 com.collation.platform.model.topology.relation.Accepts,
 .
 .
 .
 </ns1:getClassNamesResponse>
 </soapenv:Body>
</soapenv:Envelope>

Find requests
Find requests enable you to access objects in the Common Data Model.

You can use the find requests to return model objects matching a specific criteria or return information
about specific managed elements. You can also use the requests to return objects that have changed
during a specified period of time.Table 27 on page 79 describes the find operations you can perform.

Table 27. Find requests

Operation Input Output

find

(Execute a query for a configuration
item specified using the Model
Query Language)

findRequest

query
The query string

depth
The level of the result tree to
construct

indent
The indentation to use for the
resulting XML file

mssGuid
The GUID of the Management
Software System (MSS)

findResponse

findReturn: XML representation
of the query results

findBasedOnChange

(Find objects that changed in the
specified period for a given change
type)

findBasedOnChangeRequest

root
The model object to serve as
the root for the resulting XML
output.

depth
The level of the result tree to
construct

indent
The indentation to use for the
resulting XML file

start
The start time for the change
period, specified in
milliseconds since January 1,
1970, 00:00:00 GMT

end
The end time for the change
period, specified in
milliseconds since January 1,
1970, 00:00:00 GMT

changeType
The type of change.

findBasedOnChangeResponse

findBasedOnChangeReturn:
XML representation of the query
results

Chapter 1. SDK Developer's Guide 79

Table 27. Find requests (continued)

Operation Input Output

findUsingGuid

(Find using the GUID of the model
object)

findUsingGuidRequest

guid
The GUID against which to
execute the find

depth
The level of the result tree to
construct

indent
The indentation to use for the
resulting XML file

findUsingGuidResponse

findUsingGuidReturn: XML
representation of the query results

findUsingMssName

(Find using the Model Query
Language, specifying the
Management Software System by
name)

findUsingMssNameRequest

query
The query string

depth
The level of the result tree to
construct

indent
The indentation to use for the
resulting XML file

mssName
The name of the Management
Software System (MSS)

findUsingMssNameResponse

findUsingMssNameReturn: XML
representation of the query results

Example

The following example shows a find XML request:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:find soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://localhost">
 <ns1:arg0 xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">ComputerSystem</ns1:arg0>
 <ns1:arg1 href="#id0"/>
 <ns1:arg2 href="#id1"/>
 <ns1:arg3 xsi:nil="true"/>
 </ns1:find>
 <multiRef id="id1" soapenc:root="0" soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xsi:type="soapenc:int"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">4</multiRef>
 <multiRef id="id0" soapenc:root="0" soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xsi:type="soapenc:int"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">2</multiRef>
 </soapenv:Body>
</soapenv:Envelope>

The following example shows the find XML response:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:findResponse soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://localhost">

80 Application Dependency Discovery Manager: SDK Developer's Guide

 <findReturn xsi:type="soapenc:string" xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <?xml version="1.0" encoding="ISO-8859-1"?>
 <results
 xmlns="urn:www-collation-com:1.0"
 .
 .
 .
 <architecture>Intel</architecture>
 </ComputerSystem>
 </results>
 </findReturn>
 </ns1:findResponse>
 </soapenv:Body>
</soapenv:Envelope>

Change history requests
Change history requests enable you to determine the change history within the Common Data Model.

You can use the change history requests to retrieve the change history for managed elements within the
Common Data Model. Table 28 on page 81 describes the change history requests you can use.

Table 28. Change history requests

Operation Input Output

getChangeHistory

(Get the change history for the
start and end period using the
specified GUID)

getChangeHistoryRequest

guid
The GUID of the object for
which the change history is
required

start
The start time for the change
period, specified in
milliseconds since January 1,
1970, 00:00:00 GMT

end
The end time for the change
period, specified in
milliseconds since January 1,
1970, 00:00:00 GMT

getChangeHistoryResponse

getChangeHistoryReturn:
XML representation of a list of
ChangeHistory objects

getChangeHistory

(Get the change history for the
start and end period for multiple
GUIDs)

getChangeHistoryRequest1

guids
The list of comma-separated
GUIDs of the objects for
which the change history is
required

start
The start time for the change
period, specified in
milliseconds since January 1,
1970, 00:00:00 GMT

end
The end time for the change
period, specified in
milliseconds since January 1,
1970, 00:00:00 GMT

getChangeHistoryResponse1

getChangeHistoryReturn:
XML representation of a list of
ChangeHistory objects

Chapter 1. SDK Developer's Guide 81

Managing versions
Version requests manage TADDM database data versions. You can use the version requests to create
named snapshots of the current TADDM database data, delete versions, and list the defined versions
available.

Table 29 on page 82 describes the version requests you can use.

Table 29. Version requests

Operation Input Output

createVersion

(Create a named snapshot of the
current TADDM database data)

createVersionRequest

name
The name of the version

description
A description of the new
version

createVersionResponse

createEmptyVersion

(Create an empty version, with no
data, in the TADDM database)

createEmptyVersionRequest

name
The name of the version

description
A description of the new
version

createEmptyVersionRespons
e

deleteVersion

(Delete a version from the
TADDM database)

deleteVersionRequest

versionID
The identifier of the version

deleteVersionResponse

deleteVersionUsingName

(Delete a version, identified by
name, from the TADDM
database)

deleteVersionUsing
NameRequest

versionName
The name of the version

deleteVersionUsing
NameResponse

getAllVersions

(Get the names of all defined
TADDM database data versions)

getAllVersionsRequest getAllVersionsResponse

Developing applications using the REST API
You can use the TADDM REST API to develop applications that access selected TADDM resources using
HTTP and REST principles.

REST API overview
The REST API exposes a subset of the Java API functions to clients and Web browsers using HTTP. Using
the REST resources, you can develop applications for any operating system and language that supports
HTTP calls.

The REST resources expose TADDM functions you can use to query model objects by class name, by
globally unique identifier (GUID), or with Model Query Language (MQL) queries. You can also create,
delete, and update model objects, as well as manage the TADDM discovery process. All of these functions
use standard HTTP interfaces and support either JSON or XML format for input and output data.

The REST server components are installed in the $COLLATION_HOME/deploy-tomcat directory
(TADDM 7.3.0) or $COLLATION_HOME/apps (TADDM 7.3.0.1, and later) on the TADDM server and start
automatically when the TADDM server starts. The REST services are available using the same TCP/IP

82 Application Dependency Discovery Manager: SDK Developer's Guide

ports used by the TADDM administrative Web interface. (The default ports are 9430 for HTTP and 9431
for HTTPS.)

The REST API uses HTTP Basic authentication for transmitting the user ID and password using MIME
Base64 encoding. Because each request is stateless, each call to the REST API must include the HTTP
authorization header. For secure connections, use an HTTPS connection.

Parameters for REST calls are specified using standard query string notation:

http://resource_url?parameter=value¶meter=value...

If you specify a parameter value that is not valid, the TADDM server disregards the value and uses the
default value, if one can be determined. (For example, if you specify fetchSize=-2, the server uses a
fetchSize value of 1.) If no default value can be determined, the request fails.

Making REST calls with a Web browser
You can make many REST API calls by entering the appropriate URLs in a Web browser.

Before you begin
To access the REST interfaces securely using an HTTPS connection, you must first configure your browser
to accept Transport Layer Security (TLS) 1.0 connections.

About this task
The REST API uses several HTTP methods to perform various actions on REST resources. Any REST API
call that uses the HTTP GET method can be submitted using a Web browser such as Microsoft Internet
Explorer or Mozilla Firefox.

Procedure

Enter the appropriate URL using either HTTP or HTTPS.

• This example submits a query specified with Model Query Language using HTTP:

http://yourhost.com:9430/rest/model/MQLQuery?query=select%20name%20from%
20ComputerSystem%20where%20signature%20starts-with%20'M&Y'&feed=xml&fetc
hSize=100&position=1

• This example shows a ComputerSystem query submitted using HTTPS:

https://yourhost.com:9431/rest/model/ComputerSystem?depth=1

The first time you access the TADDM REST API using a browser, a login page prompts you for a valid
TADDM user ID and password.

Making REST calls in a Java application
You can use standard Java methods to access the TADDM REST API.

Before you begin
To access the REST interfaces securely using an HTTPS connection, you must first copy the
jssecacerts.cert security certificate to the client system. This file is located in the
$COLLATION_HOME/etc directory on the TADDM server.

Procedure

To access the REST API from a Java program, use the standard Java methods for HTTP communication.
This example accesses the REST API using a secure HTTPS connection:

HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 System.out.println("Warning: URL Host: "+urlHostName+" vs. "
 +session.getPeerHost());
 return true;
 }

Chapter 1. SDK Developer's Guide 83

 };

 // set this property to the location of the cert file
 System.setProperty("javax.net.ssl.trustStore", "jssecacerts.cert");

 HttpsURLConnection.setDefaultHostnameVerifier(hv);
 URL url = new
 URL("https://cab.tivlab.austin.ibm.com:9431/rest/model/"+
 "Repository?depth=1&feed=json");
 HttpsURLConnection urlConn = (HttpsURLConnection) url.openConnection();

 System.out.println("sending request...");
 urlConn.setRequestMethod("GET");
 urlConn.setAllowUserInteraction(false); // no user interaction
 urlConn.setDoOutput(true); // want to send
 urlConn.setRequestProperty("Content-type", "text/xml");
 urlConn.setRequestProperty("accept", "text/xml");
 urlConn.setRequestProperty("authorization", "Basic " +
 encode("administrator:collation"));
 Map headerFields = urlConn.getHeaderFields();
 System.out.println("header fields are: " + headerFields);

 int rspCode = urlConn.getResponseCode();
 if (rspCode == 200) {
 InputStream ist = urlConn.getInputStream();
 InputStreamReader isr = new InputStreamReader(ist);
 BufferedReader br = new BufferedReader(isr);

 String nextLine = br.readLine();
 while (nextLine != null) {
 System.out.println(nextLine);
 nextLine = br.readLine();
 }
 }

Parsing REST query results
To parse REST query results in a Java application, you can use standard XPath or JXPath methods.

Before you begin
Make sure you have access to an XPath library for parsing XML data, or a JXPath library for parsing JSON
data. XPath support is included in the IBM SDK Java Technology Edition version 5 and later. JXPath
support is included with the TADDM SDK.

Procedure

You can then use these functions to parse the output from TADDM REST calls.
The following example shows how you might return the serviceName of each of the installedServices for
an operating system, using JXPath to parse JSON output data.

Note: The JSONArray class is part of the json-simple package, which is not included in the TADDM SDK.
To download this package, go to http://code.google.com/p/json-simple/.

//queryResult contains the results from a TADDM Query
JSONArray arrayObject = (JSONArray) JSONValue.parse(queryResult);
 JXPathContext context2 = JXPathContext.newContext(arrayObject);
 Iterator names = context2.iterate("//installedServices/serviceName");
 while(names.hasNext()) {
 String serviceName = (String) names.next();
 System.out.println("service name is: " + serviceName);
 }

Debugging REST applications
If your application is encountering errors while accessing the REST API, there are several techniques you
can use to determine the nature of the problem.

About this task
The REST API uses several mechanisms to indicate the results of REST calls and errors that occur during
processing. Use these methods to debug a REST application.

84 Application Dependency Discovery Manager: SDK Developer's Guide

http://code.google.com/p/json-simple/

Procedure

Use the following methods to debug a REST application.
• Check the HTTP response code.

Commonly used response codes include the following:
200

The request was successful.
400

The input data was not valid.
409

The server encountered a conflict such as an attempt to add an object that already exists.
500

A server error occurred.
• Check the response message in the HTTP header for additional information.
• Check the log files for any relevant messages.

Messages might appear in the following files:

– $COLLATION_HOME/log/tomcat.log (TADDM 7.3.0)
– $COLLATION_HOME/log/wlp.log (TADDM 7.3.0.1, and later)
– $COLLATION_HOME/log/services/ApiServer.log

Querying model objects using the REST API
You can use the REST API to query model objects using either of two methods.

Procedure

To use the REST API to query model objects, complete one of the following two methods:
• To query model objects by specifying the model object class, use the model object class resource.

You can use this resource to query information about model objects of a particular class, optionally
including specified attribute values. This resource provides a simple way to query objects of a
particular class.
This example queries the fifth ComputerSystem object whose OSRunning attribute is set to linux:

http://example.com:9430/rest/model/ComputerSystem?depth=2&feed=xml&OSRu
nning.OSName=Linux&position=5

• To query model objects using Model Query Language (MQL), use the MQL query service resource.
This resource supports any query that can be expressed using MQL and is more flexible than the
model object class resource.
This example queries model object data using the MQL query select
displayName,OSRunning.OSName from ComputerSystem.

http://example.com:9430/rest/model/MQLQuery?query=select%20displayName,
OSRunning.OSName%20from%20ComputerSystem&position=2&fetchSize=2&feed=xm
l&depth=2&position=4

Adding model objects using the REST API
You can use the REST API to add a new model object using either of two methods.

About this task
The model object update service resource supports creation of new model objects using the HTTP POST
or PUT method, depending on whether you want to allow modification of an existing object.

In either case, you must first describe the new object data using either JSON or XML format; the server
automatically detects which format is used. If you need to specify a complex model object, it can be
useful to first query the class metadata using the model object class metadata service. The results of this

Chapter 1. SDK Developer's Guide 85

query will provide the correct attribute names for the object, which you can then use to specify the new
data in XML or JSON format.

In some situations, you might need to add a model object that includes another new model object as an
attribute, with the parent attribute required on the child object. This requires that you first determine the
GUID of the parent object so you can then set the parent attribute of the child object. You can
accomplish this in either of two ways:

• Create the parent object first, omitting the child object, which enables you to determine the GUID of the
parent. You can then create the child object, specifying the GUID of the parent object.

• Create both objects with a single request. To use this method, you must set the GUID of the parent
object to a value that is unique within the JSON or XML document, and specify that same value on the
parent attribute of the child object. This JSON example uses the ID cs1 as the GUID of the parent
object:

[{"signature":"JsonRestExample1","_class":"LinuxUnitaryComputerSystem","
numCPUs":2,"guid":"cs1","OSRunning":{"_class":"Linux","parent":"cs1","na
me":"Linux","description":"Created by sample code"}}]

For more examples, refer to the sample programs in the $COLLATION_HOME/sdk/examples/rest
directory.

Procedure

Use one of the following two methods:
• Use the model object update service and the HTTP POST method, passing the new object data in the

body of the request.
This method succeeds only if the specified object does not already exist. If the object already exists,
the request fails. Use this method if you want to create a new object but do not want to make any
changes to existing objects.

• Use the model object update service and the HTTP PUT method, passing the new object data in the
body of the request.
This method creates the specified object if it does not already exist; if the object already exists, it is
modified with the new data. Use this method if you want to make sure the specified object is in the
TADDM database, regardless of whether it already existed.

Updating model objects using the REST API
You can use the REST API to update an existing model object using either of two methods.

About this task
You can use either a model object resource or the model object update service resource to update an
existing model object, depending on whether you want to allow creation of new objects.

In either case, you must first describe the new object data using either JSON or XML format; the server
automatically detects which format is used. If you need to specify a complex model object, it can be
useful to first query the class metadata using the model object class metadata service. The results of this
query will provide the correct attribute names for the object, which you can then use to specify the new
data in XML or JSON format.

Procedure

To use the REST API to update existing model objects, complete one of the following two methods:
• Use the model object resource representing the existing object and the HTTP PUT method, passing the

new object data in the body of the request.
This resource is available only if the specified object already exists; if the object does not exist, the
request fails. Use this method if you want to modify an existing object but do not want to add the
object if it does not exist.

86 Application Dependency Discovery Manager: SDK Developer's Guide

• Use the model object update service and the HTTP PUT method, passing the new object data in the
body of the request.
This method updates the object with the new data; if the object does not already exist, this method
creates it. Use this method if you want to make sure an object with the specified object data exists in
the TADDM database, regardless of whether it already existed.

Deleting model objects using the REST API
You can use the REST API to delete a model object using either of two methods.

About this task
Only a single object can be deleted in a single request. If the specified object does not exist, no error is
returned.

Procedure

To delete a model object, complete one of the following two methods:
• To delete an object by specifying its GUID, use the corresponding model object resource, specifying

the GUID of the object to delete as part of the URL and using the HTTP DELETE method.
If you use this method, no data is required in the body of the HTTP request.
This example, submitted using the HTTP DELETE method, deletes an object using the model object
resource:

http://example.com:9430/rest/model/ModelObject/1D646C44FDEB3857B40B98BD
F9C0F407?mssGuid=CF5EBF574E7F382289B3F35FB5776628

• Use the model object update service with the delete parameter and the HTTP POST method,
specifying the object to delete in the body of the HTTP request.
Only the GUID of the object to delete is required in the input data, although the entire object can be
specified.
This example, submitted using the HTTP POST method, deletes the object specified in the body of the
request:

http://example.com:9430/rest/model/ModelObject?delete=true

Maintaining grouping patterns using REST API
Grouping patterns can be maintained without the need to use UI but by using REST API.

REST API for grouping patterns can be accessed by using standard login credentials. Basic WWW
authentication is needed. If you want to access REST API through a web browser with existing user
session, additional logon is not needed.

Data can be sent and received in two formats: JSON and XML (application/json and application/xml). The
path to the service is /cdm/api/groupingpatterns.

The following list consists of methods that you can use and the actions that they perform:

• /cdm/api/groupingpatterns :: method GET - returns all grouping patterns.
• /cdm/api/groupingpatterns/{GUID} :: method GET - returns grouping patterns with the given

GUID.
• /cdm/api/groupingpatterns :: method POST :: load in JSON or XML format - creates

new grouping patterns.
• /cdm/api/groupingpatterns/{GUID} :: method DELETE - deletes grouping patterns with the

given GUID.
• /cdm/api/groupingpatterns/ :: method PUT :: load in JSON or XML format - updates

grouping patterns.

Example load in XML format:

Chapter 1. SDK Developer's Guide 87

<groupingPattern name="GroupingPattern1" hierarchyType="ACCESS_COLLECTION"
active="true">
 <selector name="Selector1" lowerDown="include" lowerUp="include"
higherDown="include"
 higherUp="include" GroupingNameExpression="GroupingNameExpression"
useTraversalTemplate="false" type="MQL">
 <query>ComputerSystem where guid == '00000000000000000000000000000000'</
query>
 </selector>
 <description>GroupingPattern1Description</description>
</groupingPattern>

Managing discoveries using the REST API
You can use the REST API to start discovery and to manage discoveries, discovery profiles, and discovery
scopes.

Procedure

To use the REST API, complete one or more of the following steps:
• To start discovery, use the discovery service resource sending POST request, specifying a name for the

discovery run.
You can use this resource to start discovery with or without a profile.
For example, this HTML form starts discovery with the 'TestRun2' name by using the specified profile
for specified scope.

<form action="http://example.com:9430/rest/discovery/start/TestRun2"
method="post">
 Profile: <input type="text" name="profile">

 Scope: <input type="text" name="scope">

 <input type="submit" value="Submit"></input>
</form>

• To check the current discovery status, use the discovery status resource, specifying either XML or
JSON format for the output data.
This example checks discovery status using JSON format:

http://example.com/rest/discovery/status?feed=json

• To retrieve a list of defined discovery profiles, use the discovery profile service resource, specifying
either XML or JSON format for the output data.
This example lists discovery profiles using XML format:

http://example.com/rest/discovery/profiles?feed=xml

• To retrieve details of a defined discovery profile, use the discovery profile resource, specifying either
XML or JSON format for the output data.
This retrieves details of the Level 3 Discovery profile using JSON format:

http://example.com/rest/discovery/profile/Level%203%20Discovery?feed=json

• To retrieve a list of defined discovery scopes, use the discovery scope service resource, specifying
either XML or JSON format for the output data.
This example lists discovery scopes using XML format:

http://example.com/rest/discovery/scopes?feed=xml

• To retrieve details of a defined discovery scope, use the discovery scope resource, specifying either
XML or JSON format for the output data.
This retrieves details of the scope1 scope using JSON format:

http://example.com/rest/discovery/scope/scope1?feed=json

88 Application Dependency Discovery Manager: SDK Developer's Guide

REST resource reference
The REST API exposes resources you can use to query, create, update, and delete model objects, and to
manage discoveries.

Model object class
The model object class resource represents a class of model objects defined by the Common Data Model.

Description

Use this resource to retrieve information about model objects by specifying a model object class,
optionally including attribute values. This type of request provides a subset of the information available
through MQL queries.

Use the HTTP GET method to send an MQL query request.

URL
scheme//hostname:port/rest/model/model_object_class

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

model_object_class
The model object class name. Specify either the short name (such as ComputerSystem) or the fully
qualified name (such as com.collation.platform.model.topology.sys.ComputerSystem).

HTTP methods
GET

Queries model objects.

Parameters
cols=value

A comma-separated list of the column names for which you want data to be returned. The default is
to return data from all columns.

depth=value
The depth of the query. The default value is 1.

Note: A query with a depth greater than 1 can return a large result set, causing low-memory
conditions on the TADDM server. To avoid this problem, specify fetchSize=1 and use consecutive
queries to scroll through the data one position at a time. Refer to the sample programs in the
$COLLATION_HOME/sdk/examples/rest directory to see examples of how to use this technique.

feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

fetchSize=value
The maximum number of objects to return from the result set. The default value is 1.

Chapter 1. SDK Developer's Guide 89

longClassName={true|false}
Specifies whether all model object class names in the output must be specified using the fully
qualified form (for example, com.collation.platform.model.topology.sys.ComputerSystem). Specify
true or false. This option is valid only for JSON output. The default value is false.

mssGuid=value
The GUID value of the management software system (MSS) associated with the object. This
parameter is optional.

position=value
The starting position in the result set for the objects you want returned from the query. The default
value is 1 (the first object in the result set). If you specify a position that is greater than the total
number of objects in the result set, no objects are returned.

attribute_name=attribute_value
An optional attribute name and value. Use this option to limit the query output to objects matching the
specified attribute value. If you specify more than one attribute, only objects matching all of the
specified attribute values are returned.

Returns

If the query is successful, the server returns the HTTP return code 200, and the query result data in either
JSON or XML format (as specified by the feed parameter or the HTTP Accept header). If the query
returns no data, the result set is an empty JSON array or XML document, depending on the feed type.

The TADDMQueryComplete pragma header of the returned data indicates whether all available query
results have been returned; true indicates that all results have been returned, and false indicates that
more query results are available. You can control which results are returned by adjusting the values of the
optional position and fetchSize parameters.

Example
This example queries the fifth ComputerSystem object whose OSRunning attribute is set to linux:

http://example.com:9430/rest/model/ComputerSystem?depth=2&feed=xml&OSRu
nning.OSName=Linux&position=5

MQL query service
The MQL query service resource retrieves model object data based on queries written in the Model Query
Language (MQL).

Description

Use this resource to retrieve model object data using queries written in MQL. The MQL query service can
provide more detailed information than is available from the Model Object Class resource.

URL
scheme//hostname:port/rest/model/MQLQuery

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

90 Application Dependency Discovery Manager: SDK Developer's Guide

HTTP methods
GET

Queries model objects.

Parameters
depth=value

The depth of the query. The default value is 1.

Note: A query with a depth greater than 1 can return a large result set, causing low-memory
conditions on the TADDM server. To avoid this problem, specify fetchSize=1 and use consecutive
queries to scroll through the data one position at a time. Refer to the sample programs in the
$COLLATION_HOME/sdk/examples/rest directory to see examples of how to use this technique.

feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

fetchSize=value
The maximum number of objects to return from the result set. The default value is 1.

longClassName={true|false}
Specifies whether all model object class names in the output must be specified using the fully
qualified form (for example, com.collation.platform.model.topology.sys.ComputerSystem). Specify
true or false. This option is valid only for JSON output. The default value is false.

mssGuid=value
The GUID value of the management software system (MSS) associated with the object. This
parameter is optional.

position=value
The starting position in the result set for the objects you want returned from the query. The default
value is 1 (the first object in the result set). If you specify a position that is greater than the total
number of objects in the result set, no objects are returned.

query=value
The query string, written in MQL notation. This parameter is required.

Note: Model object queries can return large amounts of data. To avoid memory and performance
problems, select only the columns you need.

Returns

If the query is successful, the server returns the HTTP return code 200, and the query result data in either
JSON or XML format (as specified by the feed parameter or the HTTP Accept header). If the query
returns no data, the result set is an empty JSON array or XML document, depending on the feed type.

The TADDMQueryComplete pragma header of the returned data indicates whether all available query
results have been returned; true indicates that all results have been returned, and false indicates that
more query results are available. You can control which results are returned by adjusting the values of the
optional position and fetchSize parameters.

Example
This example queries model object data using the MQL query select
displayName,OSRunning.OSName from ComputerSystem.

http://example.com:9430/rest/model/MQLQuery?query=select%20displayName,
OSRunning.OSName%20from%20ComputerSystem&position=2&fetchSize=2&feed=xm
l&depth=2&position=4

Chapter 1. SDK Developer's Guide 91

Model object
A model object resource represents a specific model object instance that exists in the TADDM database,
identified by GUID.

Description

Use this type of resource to query, update, or delete a single model object instance identified by its
globally unique identifier (GUID).

URL
scheme//hostname:port/rest/model/ModelObject/guid

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

guid
The globally unique identifier (GUID) of a model object instance that exists in the TADDM database. If
you are updating an object, this GUID must match the GUID specified in the JSON or XML object data.

HTTP methods
GET

Queries a model object.
PUT

Updates a model object. The new object data must be specified in the body of the HTTP request, in
either JSON or XML format. (The server automatically detects the format of the input data.)

DELETE
Deletes a model object.

Parameters
depth=value

The depth of the query. The default value is 1. This parameter is not used when updating or deleting
objects.

feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

The feed parameter is not used when updating or deleting an object.

longClassName={true|false}
Specifies whether all model object class names in the output from a query are specified using the fully
qualified form (for example, com.collation.platform.model.topology.sys.ComputerSystem). Specify
true or false. This option is valid only for JSON output. The default value is false.

mssGuid=value
The GUID value of the management software system (MSS) associated with the object. This
parameter is optional.

92 Application Dependency Discovery Manager: SDK Developer's Guide

Returns

If the request is successful, the server returns HTTP return code 200. For a query, the server also returns
the result data in either JSON or XML format (as specified by the feed parameter or the HTTP Accept
header). If the query returns no data, the result set is an empty JSON array or XML document, depending
on the feed type.

Example

This example queries, updates, or deletes an existing object, depending on the HTTP method used. (To
update an object, the body of the request must contain the updated object data.)

http://example.com:9430/rest/model/ModelObject/1D646C44FDEB3857B40B98BD
F9C0F407?mssGuid=CF5EBF574E7F382289B3F35FB5776628

Model object class metadata
The model object class metadata resource represents the metadata describing the attributes of a model
object class.

Description

Use the model object class metadata resource to query data about the attributes of a specified model
object class, including the number, type, and name of each attribute. This information is equivalent to that
returned by the Java getMetaData() method.

The metadata can be returned in either JSON or XML format.

URL
scheme//hostname:port/rest/model/meta/model_object_class

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

model_object_class
The name of a Common Data Model object class.

HTTP methods
GET

Queries object class metadata.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

Example

This example queries metadata information for the ComputerSystem model object:

Chapter 1. SDK Developer's Guide 93

http://example.com:9430/rest/model/meta/ComputerSystem?feed=json

This example shows JSON output from a metadata query:

[{"type":"java.lang.String","column":"BOOTORDER_X","length":192,"name":
"bootOrder","arrayType":false,"_class":"ObjectAttribute","timestampType
":false,"displayString":"Boot Order"}, {"type":"com.collation.platform.
model.topology.sys.zOS.ZReportFile","table":"COMPUTERSYSTILES_935A6002X
","column":"PK__ZREPORTFILES_X","length":192,"name":"ZReportfiles","arr
ayType":true,"reverseRelationship":true,"_class":"ObjectAttribute","rel
ationshipType":"com.collation.platform.model.topology.relation.AppliesT
o","timestampType":false,"displayString":"z\/OS Report File"}]

This example shows partial XML output of a metadata query:

<ObjectAttribute array="22" xsi:type="coll:com.collation.platform.model
.topology.meta.ObjectAttribute">
 <name>OSRunning</name>
 <type>com.collation.platform.model.topology.sys.OperatingSystem</type>
 <arrayType>false</arrayType>
 <timestampType>false</timestampType>
 <length>192</length>
 <relationshipType>com.collation.platform.model.topology.relation.Runs
On</relationshipType>
 <reverseRelationship>true</reverseRelationship>
 <displayString>OS Running</displayString>
 <column>PK__OSRUNNING_X</column>
 <displayName />
</ObjectAttribute>

Model object update service
The model object update service resource creates, updates, or deletes model objects passed to the
server in JSON or XML format.

Description

Use the model object update service to update or delete an existing model object, or to add a new model
object. In each case, the target of the operation is the object specified in the body of the request, in JSON
or XML format.

URL
scheme//hostname:port/rest/model/ModelObject

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

HTTP methods
POST

Creates or deletes a model object, depending on the value of the delete parameter. The object to be
created or deleted must be specified in the body of the HTTP request in JSON or XML format. (The
server automatically detects the format of the input data.) Specify only one primary object; arrays of
objects are not supported.

If you use this method to create a new object, the specified object must not already exist in the
TADDM database. (The POST method cannot be used to update an existing object.)

94 Application Dependency Discovery Manager: SDK Developer's Guide

If you use this method to delete an existing object, only the GUID is required in the input data.
However, the entire object can also be specified. No error is returned if the specified object does not
exist.

PUT
Updates an existing object or creates a new object. The new object data must be specified in the body
of the HTTP request in either JSON or XML format. Specify only one primary object; arrays of objects
are not supported.

If the specified object already exists, it is updated with the new data. If the object does not exist, it is
created.

If you are updating an existing object, you can improve performance by including only the GUID and
the fields required for the update, instead of the entire object. For example, an update to the
description of an OperatingSystem object might include the following data:

[{"description":"Validated on February 4","_class":"Linux","guid":"347EE
64E4FA93139A581757EC7F3ED2D"}]

Any object attributes not specified in the update data are left unchanged.

Parameters
delete={true|false}

Indicates whether the specified model object should be deleted. Use the HTTP POST method and
delete=true to delete an object.

feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

mssGuid=value
The GUID value of the management software system (MSS) associated with the object. This
parameter is optional.

Returns

If the request is successful, the server returns HTTP return code 200.

The following example deletes the model object specified by the input data:

http://example.com:9430/rest/model/ModelObject?delete=true

Discovery service
The discovery service resource starts a discovery with or without a profile.

Description

Use this type of request to start a discovery using any currently defined profile, or without a profile.

URL
scheme//hostname:port/rest/discovery/start/run_name

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.

Chapter 1. SDK Developer's Guide 95

port
The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

run_name
The name for the discovery run.

HTTP methods
POST

Starts a discovery. A discovery must not already be in progress. You must submit the url request by
using the HTTP POST operator.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

guids=values
One or more globally unique identifiers (GUIDs) of objects that have previously been discovered. Use
this parameter to run a rediscovery on existing objects, if you have enabled rediscovery.

profile=profile_name
The name of the profile to use. The specified profile must exist.

scope=values
One or more scopes, separated by commas. Each value can be any of the following:

• A defined scope name
• A specific IP address or host name (for example, 192.168.1.71 or server.example.com)
• A specific IP address to exclude, enclosed in parentheses (for example, (192.168.1.71))
• An IP address range (for example, 10.10.10.1-10.10.10.20)
• A subnet (for example, 10.10.20.0/255.255.255.0

An IP address, address range, or subnet can be enclosed in parentheses to indicate that it should be
excluded from the scope. For example, 192.168.1.1-192.168.1.72,(192.168.1.71) would
include all IP addresses in the specified range except 192.168.1.71.

locationTag=value
The value of location tag to set for objects that are created during a discovery.

 addressSpace=value
The address space name that is set for all IpAddress or IpNetwork objects that are created during a
discovery.

Input example
This example starts a discovery by using the Level 3 Discovery profile, with the scope including the
hosts 192.168.100.101 and 102.168.100.102. You can use any tool or utility that can make an HTTP
request and submit the request by using the POST operator.

http://example.com:9430/rest/discovery/start/TestRun2?profile=Level%203
%20Discovery&scope=192.168.100.101,192.168.100.102

96 Application Dependency Discovery Manager: SDK Developer's Guide

Returns

If the request is successful, the HTTP response code 200 is returned, along with the message
Discovery start submitted. If a discovery is already in progress, the request fails and an error
message is returned. You can then use the discovery status resource to monitor discovery progress.

Discovery status
The discovery status resource represents the current discovery status on the TADDM server.

Description
Use this resource to check the status of the current discovery run. The information returned is equivalent
to that returned by the Java getStatus() method.

URL
scheme//hostname:port/rest/discovery/status

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

HTTP methods
GET

Queries discovery status.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

Returns

The current discovery status is returned using the specified format. The following example shows
discovery status in XML format:

<status>Idle</status>

Example
This example checks discovery status:

http://example.com:9430/rest/discovery/status?feed=xml

Discovery profile service
The discovery profile service resource lists the defined discovery profiles.

Description
Use this resource to retrieve a list of all discovery profiles currently defined on the TADDM server.

Chapter 1. SDK Developer's Guide 97

URL
scheme//hostname:port/rest/discovery/profiles

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

HTTP methods
GET

Lists discovery profiles.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

Returns

A list of defined discovery profiles is returned using the specified format. The following example shows
output in JSON format:

[{“name”:”profile1”},{“name”:”profile2”}]

Example
This example lists discovery profiles:

http://example.com:9430/rest/discovery/profiles?feed=json

Discovery profile
The discovery profile resource represents a defined discovery profile.

Description
Use the discovery profile resource to retrieve detailed information about a defined discovery profile.

URL
scheme//hostname:port/rest/discovery/profile/profile_name

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

98 Application Dependency Discovery Manager: SDK Developer's Guide

profile_name
The name of a defined discovery profile.

HTTP methods
GET

Retrieves details of a discovery profile.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

Returns

The details of the discovery profile are returned using the specified format.

Example
This example retrieves information about the Level 3 Discovery profile:

http://example.com:9430/rest/discovery/profile/Level%203%20Discovery?feed=xml

Discovery scope service
The discovery scope service resource lists the defined discovery scopes.

Description
Use this resource to retrieve a list of all discovery scopes currently defined on the TADDM server.

URL
scheme//hostname:port/rest/discovery/scopes

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

HTTP methods
GET

Lists discovery scopes.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

Chapter 1. SDK Developer's Guide 99

Returns

A list of defined discovery scopes is returned using the specified format. The following example shows
output in JSON format:

[{“name”:”scope1”},{“name”:”scope2”}]

Example
This example lists discovery scopes:

http://example.com:9430/rest/discovery/scopes?feed=json

Discovery scope
The discovery scope resource represents a defined discovery scope.

Description
Use the discovery scope resource to retrieve detailed information about a defined discovery scope set or
scope group.

URL
scheme//hostname:port/rest/discovery/scope/scope_name

where:
scheme

The scheme of the URL (either HTTP: or HTTPS:).
hostname

The TCP/IP hostname or numeric IP address of the TADDM server.
port

The TCP/IP port on the TADDM server for the type of connection you are using (9430 for HTTP, or
9431 for HTTPS).

scope_name
The name of a defined discovery scope set or scope group.

HTTP methods
GET

Retrieves details of a discovery scope.

Parameters
feed={json|xml}

The format to use for the returned data. Specify json or xml. This parameter is optional.

If you do not specify the feed parameter, the server uses the format specified by the HTTP Accept
header (application/json or application/xml). If this header is not specified, the results are
returned in JSON format.

Returns

The details of the discovery scope are returned using the specified format.

Example
This example retrieves information about the scope1 scope:

http://example.com:9430/rest/discovery/scope/scope1?feed=xml

100 Application Dependency Discovery Manager: SDK Developer's Guide

Command-line interface API
You can use api.bat or api.sh to issue various commands on the TADDM server through the
command-line interface (CLI). For example, you can use the CLI to start a discovery run.

Command syntax and parameters
You can use api.sh or api.bat to access a portion of the TADDM API functionality. The command
syntaxes present the rules for running api.sh and api.bat.

For UNIX:

api.sh -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] COMMAND COMMAND-PARAMETERS

For Windows:

api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] COMMAND COMMAND-PARAMETERS

Common parameters
-u|--user user

The user that runs the API command.
-p|--password password

The password that authenticates the user.
-H|--host host

Optional: The TADDM server host name, by default, is localhost. If you use the -T parameter, you
must also specify the -H parameter.

-P|--port port
Optional: The TADDM server port, by default, is 9433.

-v|--version version
Optional: The version name or number, by default, is 0.

-T|--truststorefile truststore
Optional: Location of the truststore file, jssecacerts.cert, with a certificate for connection to the
TADDM server. This parameter is required for secure connection to TADDM. If you use this parameter,
you must also specify the -H parameter.

COMMAND COMMAND-PARAMETERS
The parameters are different for each of the commands.

Additional information

To see help about the command and command-parameters, enter the following command from the
$COLLATION_HOME/sdk/bin directory:
On UNIX systems

api.sh

On Windows systems

api.bat

Changes command
The changes command retrieves the changes for an object.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] changes guid from-date [to-date]

Chapter 1. SDK Developer's Guide 101

Parameters
changes

Runs the changes command.
guid

Is the GUID of the object for which you want to determine changes.
from-date

Is the beginning date of the changes command. Use the mm/dd/yy hh:mm:ss AM|PM format.
to-date

Is the end date of the changes command. Use the mm/dd/yy hh:mm:ss AM|PM format.

Note: If you want to run an advanced change history query on the discovery server, the -H parameter
must point to a storage server. Otherwise, the query fails.

Example

This command finds all changes to an object that occurred between two specific dates. Enter the
command on one line:

api.sh -u user -p password -H host -P port changes
 10A5794E86C53A0BBB10F262055CB3EA “06/06/05 12:00:00 AM” “06/08/05 12:00:00 AM”

Delete command
The delete command removes the objects from the TADDM database.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] delete guid1 [guid2 guid3 ... guidn]

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] delete -f|--file guid-list-file

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] delete -m|--mql mql-query

Parameters
delete

Runs the delete command.
guid1 [guid2 guid3 ... guidn]

Are the GUIDs of the objects to delete.
-f|--file guid-list-file

Is the location and name of the text file that contains the GUID list of the objects to delete. The GUIDs
can be separated by space, tab, or the new line character. The file can be generated by the dbquery
script.

-m|--mql mql-query
Is the MQL query, which selects the objects to delete.

Example

The following command deletes an object with the specified GUID. Enter the command on one line.

api.sh -u user -p password -H host -P port delete
 10A5794E86C53A0BBB10F262055CB3EA

The following command deletes objects with specified GUIDs. Enter the command on one line.

api.sh -u user -p password -H host -P port delete
 C172810FD1CF3E108B8127BC47D2667B 059E4D85B34C32D1B5A80D9E2DB09EBD

102 Application Dependency Discovery Manager: SDK Developer's Guide

35D21D3CA08539908DC1762D26897FB6

The following command deletes objects that are selected by the specified MQL query. Enter the command
on one line.

api.sh -u user -p password -H host -P port delete
 --mql "select * from AppServer where objectType == 'SAS'"

The following command deletes objects based on the GUID list in the text file. The dbquery script is used
to generate guid-list-file. Enter the command on one line.

dbquery.sh -u user -p password -q "select guid_c from BB_APPSERVER6_V
where objectType_C like '%SAS'" > /tmp/guidListToDelete.txt
api.sh -u user -p password -H host -P port delete -f /tmp/guidListToDelete.txt

Discover command
The discover command starts or stops a discovery run.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] discover start [--name run-name] [--profile profile-
name] [--locationTag location-tag] [-a|-addressSpace addressSpace] scope-element1|
scope-set1|scope-group1 scope-element2|scope-set2|scope-group2 ... scope-elementn|scope-setn|
scope-groupn

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] discover abort|status

Parameters
discover

Runs the discover command.
start scope-element1 scope-element2 ... scope-elementn

Starts a discovery with the specified scope elements. The scope element can be an existing Scope
name, or:

• Specific IP address: 192.168.1.71
• Exclude of a specific IP address: 192.168.1.71(exclude), or (192.168.1.71), or 192.168.1.71(exc)
• Range or Range Exclude: 10.10.10.1-10.10.10.20, or (10.10.10.1-10.10.10.20)
• Network (Subnet) or Network Exclude: 10.10.20.0/255.255.255.0, or (10.10.20.0/255.255.255.0)

start scope-set1 scope-set2 ... scope-setn
Starts a discovery with the specified scope sets.

start scope-group1 scope-group2 ... scope-groupn
Starts a discovery with the specified scope group.

--name run-name
Is the name of the discovery run.

--profile profile-name
Uses the profile that is specified by profile name for the discovery.

--locationTag location-tag
Specifies location tag that is used for this discovery.

 -a | -addressSpace addressSpace
Specifies the address space name for all IpAddress or IpNetwork objects that are created during the
discovery started with api.sh or api.bat.

abort|stop
Stops a running discovery on the specified host.

Chapter 1. SDK Developer's Guide 103

status

Returns the discovery status on the specified host, from among the following values:

• Running
• Idle

Examples

• This command discovers subnet 10.10.10.0/24 using a Level 1 discovery profile. Enter the command on
one line:

api.sh -u user -p password -H host discover start
 --profile “Level 1 Discovery” “10.10.10.0/255.255.255.0”

• This command discovers the scope set named MyScope using a Level 2 discovery profile. Enter the
command on one line:

api.sh -u user -p password -H host
 discover start --profile "Level 2 Discovery" "MyScope"

• This command discovers the scope set named MyScope using a Level 3 discovery profile with a 1.2.3.4
host excluded and 2.3.4.5-2.3.4.7 range included. Enter the command on one line:

api.sh -u user -p password -H host discover start
--profile "Level 3 Discovery" "MyScope" "(1.2.3.4)" "2.3.4.5-2.3.4.7"

• This command discovers the scope set named MyScopeSet using a Level 1 discovery profile. Enter the
command on one line:

api.sh -u user -p password discover start
 --profile “Level 1 Discovery” "MyScopeSet"

• This command discovers the scope group named MyScopeGroup using a Level 1 discovery profile. Enter
the command on one line:

api.sh -u user -p password discover start
 --profile “Level 1 Discovery” "MyScopeGroup"

Load-balanced discover command
The discoverloadbalanced command allows a discovery to be run in load-balancing mode, which
means discovery is continuous.

About load-balanced discovery

Load-balanced, continuous discovery is achieved by using a pool of discovery servers. This maximizes the
utilization of servers and guards against failover, thereby preventing discoveries in progress from being
interrupted.

Discovered environments can be separated into areas, with each drawing on its own pool of servers.
Furthermore, each discovery can be performed by entering sets of IP addresses to define the scope of the
discovery.

The PrimaryStorageServer (PSS) acts as a load-balancing discovery controller, allocating scope and
resources to each discovery server (DS). Should the PSS fail, all running discoveries will be completed,
but no new ones allocated.

The PSS controls discovery by placing work into a queue, but does not push tasks to a DS; instead, each
participating DS actively requests work from the queue when it is ready, and then signals 'in progress' as
the discovery progresses. If no 'in progress' signal is received, the PSS reallocates the work.

When running in continuous (or load-balanced) mode, the discovery server starts another discovery as
soon as DiscoveryWorker threads are free to be used, even before the previous discovery is finished. The

104 Application Dependency Discovery Manager: SDK Developer's Guide

continuous discovery command is available only to the primary storage server (in enterprise mode) and
domain server (in single domain mode).

Tip: Sensors storing data are displayed on the UI as 'in progress'. This is not the same as the number of
threads running a discovery.

Load-balancing discovery scenarios

Load-balanced HA discovery based against scope group
A user runs a discovery against a defined scope group via command line interface (CLI). The pool of
servers is used to optimize the discovery workload, based on the scopes (from single to multiple
scope) being part of the scope group.

Dynamic generation of the scope group

A user runs a load-balanced discovery using a list of IP addresses provided as a file. This creates a
scope group with automatically generated child scopes, with IP addresses divided between child
scopes.

Command syntax

As for a standard discovery using the discover command, the continuous load-balanced discovery
functionality (discoverloadbalanced) is controlled using api.sh.

Parameters

api.sh -u <user> -p <password> discoverloadbalanced start --poolName <poolName> --scopeGroup
<scopeGroup> [--profile <profileName>]

Starts continuous, load-balanced discovery against each scope in <scopeGroup>, and on each server
belonging to the discovery pool specified in <poolName>

api.sh -u <user> -p <password> discoverloadbalanced startFromFiles --files <filePath1,filePath2,...>
--maxScopeSize <size> [--profile <profileName>]

Starts continuous, load-balanced discovery against each scope passed via --files argument. Each
file is parsed, and a new group named from file name (without extension) is created. In each group
scopes are added with the maximum size specified in maxScopeSize. poolName is assumed to be
the same as groupName

api.sh -u <user> -p <password> discoverloadbalanced startFromDirectory --dir <directory path> --
maxScopeSize <size> [--profile <profileName>]

As in the --files example, but starts discovery against each file in the directory.
api.sh -u <user> -p <password> discoverloadbalanced status

Prints the current status of the load-balanced discovery.
api.sh -u <user> -p <password> discoverloadbalanced abort <poolName>

Aborts the discovery for the poolName specified.
api.sh -u <user> -p <password> discoverloadbalanced abort --poolName <poolName> --scopeSet
<scopeSetName>

Aborts the discovery for a specified scopeSet running or scheduled within the specified poolName.
api.sh -u <user> -p <password> discoverloadbalanced pause <poolName>

Stops discovery for the specified poolName, and all scopes in the discovery run are moved back to
the 'forTake' state. Current discoveries are aborted.

api.sh -u <user> -p <password> discoverloadbalanced resume <poolName>
Resumes paused discovery for the specified poolName, and all scopes in the 'forTake' state are now
available for processing.

Properties for the primary storage server

Set the following properties for the primary storage server (or domain):

Chapter 1. SDK Developer's Guide 105

com.ibm.cdb.internalscheduling.discoverypool.scopePrefix
Specifies prefix for automatically created scopes (for startFromFiles and startFromDirectory options)
Default: com.ibm.cdb.internalscheduling.discoverypool.scopePrefix=_auto_

com.ibm.cdb.internalscheduling.discoverypool.timeToNonAlive
Specifies time in seconds, that is, how long discovery is assumed to be running without any
information about status received from the discovery server.
Once time has passed, the scope is moved back to the 'forTake' state, so it can be redone by the other
server which is still responding.
Default: com.ibm.cdb.internalscheduling.discoverypool.timeToNonAlive=180

Properties for the discovery server

Set the following properties for the discovery server (or domain):
com.ibm.cdb.internalscheduling.discoverypool.enabled

Enables the discovery server to be part of the discovery pool.
Default: com.ibm.cdb.internalscheduling.discoverypool.enabled=false

com.ibm.cdb.internalscheduling.discoverypool.name
Defines poolName for a discovery server
Default: com.ibm.cdb.internalscheduling.discoverypool.name=DEFAULT

com.ibm.cdb.internalscheduling.discoverypool.checkinginterval
Specifies the time in seconds that the discovery server checks for new jobs to take (if ready), also how
often to inform PSS about a job in progress.
The interval specified needs to be smaller than
com.ibm.cdb.internalscheduling.discoverypool.timeToNonAlive on a primary storage
server, otherwise scopes might be returned to be re-executed.
Default: com.ibm.cdb.internalscheduling.discoverypool.checkinginterval=20

Note: Logs from the continuous discovery are stored in the ApiServer.log on the domain, or the primary
storage server.

Export command
The export command exports data for top-level model objects in the TADDM database.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] export [--mssguid mss-guid|--mssname mss-name] [--
maxfilesize size] local-directory-to-write-data

Parameters
export

Runs the export command.
--mssguid mss-guid|--mssname mss-name

Is the GUID or the name of the Management Software System. Only data that is associated with the
specified MSS is exported.

You can find the Management Software System name in the UI. Go to the Details pane of a model
object and open the MSS Info tab. Subcomponent Instance Name is the Management Software
System name, for example LinuxComputerSystemSensor. If you want to export all objects that are
discovered by this sensor, run the following command:

export --mssName LinuxComputerSystemSensor

If you want to find both name and GUID of the Management Software System, run the following
command:

106 Application Dependency Discovery Manager: SDK Developer's Guide

api.sh -u user -p password find -d 1 ManagementSoftwareSystem

As a result, you get a list of model objects with a specific set of information, for example:

<ManagementSoftwareSystem array="1"
 guid="MY_GUID" xsi:type="coll:com.collation.platform.model.topology.process.
ManagementSoftwareSystem">
 <manufacturerName>IBM</manufacturerName>
 <productName>TADDM</productName>
 <hostname>hostname.domain</hostname>
 <subcomponent>Discovery</subcomponent>
 <subcomponentInstanceName>IvmSensor</subcomponentInstanceName>
 <displayName>IBM:TADDM:hostname.domain:Discovery:IvmSensor</displayName>
 <bidiFlag>3</bidiFlag>
</ManagementSoftwareSystem>

In this example, the MSS GUID is MY_GUID and the MSS name is IvmSensor. If you want to run the
export command with this data, use one of the following commands:

export --mssguid MY_GUID

or

export --mssname IvmSensor

Note: In case of GUID, use the correct value from the API query.

--maxfilesize size
Is the maximum size of the exported files, in bytes.

local-directory-to-write-data
Is the name of the directory to which the data is exported.

Example

This command exports top-level model objects to the specified directory:

api.sh -u user -p password -H host export directory/

Find command
The find command finds a set of objects and returns an XML representation.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] find [--depth depth] [--indent num-spaces] [-o|--outfile local-file-to-
write-to [-x --maxfilesize size]] [-s --suppress list-of-classes-to-suppress] root

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] find [--depth depth] [--indent num-spaces] --guid object-guid

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] find [--depth depth] [--indent num-spaces] [--changetype type --from
from-date [--end end-date]] root

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] find [--depth depth] [--indent num-spaces] [--mssguid mss-guid|--
mssname mss-name] mql-query

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] find --count mql-query

Parameters
find

Runs the find command.

Chapter 1. SDK Developer's Guide 107

--depth depth
Is the level of the result tree to construct.
Querying a large amount of data or specifying more than one level can cause out of memory
messages. To avoid memory issues, limit the depth value or increase the maximum heap size of the
JVM memory. If possible, do not use depth value higher than 3. You can increase the memory with
the-Xmx JVM option in api.bat or api.sh.

--indent num spaces
Is the indentation to use for the resulting XML output.

--changetype type

Is the type of change, from among the following values:

0
Created

1
Updated

2
Deleted

3
Creates and updates

4
All changes

--from from-date
Is the beginning date of the change parameter. Use the mm/dd/yy hh:mm:ss AM|PM format.

--end end-date
Is the end date of the change parameter. Use the mm/dd/yy hh:mm:ss AM|PM format.

-o|--outfile local-file-to-write-to
Is the name of the file to redirect the output of the find command to.

-x|--maxfilesize size
Is the outfile can be wrapped into several smaller files by specifying the maximum file size in bytes.
The output is split into several files under the maximum file size, when possible.

-s|--suppress list-of-classes-to-suppress
Is a list of classes to be omitted from the find results. The classes are model object name classes,
such as ComputerSystem or OperatingSystem.

--guid object-guid
Is the GUID of the object for which the find command is being executed.

--mssguid mss-guid|--mssname mss-name
Is the GUID or the name of the Management Software System.

--count mql-query
Returns the number of objects that meet the MQL query.

mql-query
Is the query that is specified using the Model Query Language (MQL), for example, SELECT attributes
FROM object type [WHERE expression]. You can use long or short names for the object types in this
argument. For more information about class names and MQL queries, see the related concepts.

root
Is the model object to serve as the root for the resulting XML output. You can use long or short names
for the object types in this argument. For more information about class names, see the related
concept.

108 Application Dependency Discovery Manager: SDK Developer's Guide

Examples

• This command finds computer systems and saves the results to the cs_output.xml file with a
maximum file size of 1000 bytes:

api.sh -u user -p password -H host -P port find -o cs_output.xml -x 1000 ComputerSystem

• This command counts the number of ComputerSystem objects in the database:

api.sh -u user -p password find --count "select * from ComputerSystem"

• This command limits the find to a defined depth level. The results are saved to the cs_output.xml
file:

api.sh -u user -p password -H host -P port find --depth depth -o cs_output.xml ComputerSystem

Import command
The import command imports data into the TADDM database.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] import [--timeout time] [--mssguid mss-guid --mssname
mss-name] [--maxfilesize size] local-directory-to-read-data-from

Parameters
import

Runs the import command.
--timeout time

Is the timeout value, useful for large file imports. Specify the value in seconds.
--mssguid mss-guid|--mssname mss-name

Is the GUID or the name of the Management Software System with which the imported data is
associated.

local-directory-to-read-data-from
Is the name of the directory from which the data is imported.

Example

This command imports data into TADDM. The command attempts to import all files in the specified
directory. If the command encounters an invalid XML file, it returns an exception but the command
continues importing.

api.sh -u user -p password -H host import directory/

Merge command
The merge command merges CI on the basis on their GUIDs.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] merge DurableCI_GUID TransientCI_GUID [type type]

Parameters
merge

Runs the merge command.
DurableCI_GUID

The GUID that persists after merging with the other one.

Chapter 1. SDK Developer's Guide 109

TransientCI_GUID
The GUID that is merged into the durable GUID and removed from the database.

type type
The type of the merge process. There are two possible values:

• 0, which stands for a shallow type of the merge process, meaning that only the main objects are
merged. The child objects of the transient GUID are replaced with the child objects of the durable
GUID. The shallow type of the merge process is the default type.

• 1, which stands for a deep type of the merge process, meaning that main objects along with their
child objects are merged.

Note: At this moment, only shallow type of the merge process is enabled. When you specify 1 for the
type parameter, still the shallow type is used. The deep type will be enabled in future.

Important: When you merge CIs, both of the CIs must be of the same class. For example, you can merge
two ComputerSystem objects, but you cannot merge a ComputerSystem object with an ApplicationServer
object.

Example

The following command merges two specified GUIDs by using the shallow type of the merge process.
Enter the command on one line.

api.sh -u user -p password -H host -P port merge 10A5794E86C53A0BBB10F262055CB3EA
C172810FD1CF3E108B8127BC47D2667B type 0

Naming command
The naming command returns the GUIDs that are associated with a configuration item (CI). The
command returns only the GUIDs of top-level CIs in the XML file.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] naming -f model-object-xml-file

Parameters
naming

Runs the naming command.
-f model-object-xml-file

The location and name of the XML file that contains the configuration item (model object).

Example

This command displays the GUIDs for CIs in the XML file:

api.sh -u user -p password -H host naming sample.xml

Rediscover command
The rediscover command rediscovers objects.

Note: Before you run the rediscovery, make sure that the com.collation.rediscoveryEnabled
parameter is set to true. The objects that you want to rediscover must be previously discovered at least
once.

Command syntax

api.sh|api.bat -u|--user user -p|--password password rediscover guid1 [guid2 guid3 ...
guidn]

110 Application Dependency Discovery Manager: SDK Developer's Guide

Parameters
rediscover

Runs the rediscover command.
guid1 [guid2 guid3 ... guidn]

Are the GUIDs of the objects to rediscover.

Example

The following command rediscovers objects with specified GUIDs. Enter the command on one line.

./api.sh -u administrator -p collation rediscover 4C778F231DB03FCF815E38EAD7CB1D66
B609D10039C23AE9A51E433EC311A9EE F503F3B70DF93587A635D574A78B248A

Servers command
The servers command shows information about the servers in a streaming server deployment.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getservers

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getdiscoveryservers

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getdiscoveryserverstatus

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getstorageservers

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getstorageserverstatus

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getlocalserver

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] servers getlocalserverstatus

Parameters
servers

Runs the servers command.
getservers

Lists all running storage and discovery servers.
getdiscoveryservers

Lists all running discovery servers.
getdiscoveryserverstatus

Shows the detailed status and performance information for all discovery servers.
getstorageservers

Lists all running storage servers.
getstorageserverstatus

Shows the detailed status and performance information for all storage servers.
getlocalserver

Shows information about the local server.
getlocalserverstatus

Shows the detailed status and performance information for the local server.

Chapter 1. SDK Developer's Guide 111

Examples

• This command lists all running storage servers and discovery servers:

api.sh -u user -p password -H host -P port servers getservers

• This command lists all running discovery servers:

api.sh -u user -p password -H host -P port servers getdiscoveryservers

• This command shows the detailed status and performance information for all storage servers:

api.sh -u user -p password -H host -P port servers getstorageserverstatus

Sync command
The sync command starts a domain server synchronization.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] sync start domain

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] sync status domain

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] sync logs domain

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] sync stop domain

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port port] [-
T|--truststorefile] sync delete domain

Parameters
sync

Runs the sync command.
start

Starts a domain server synchronization.
status

Shows the status of a domain server synchronization.
logs

Shows the log files for a domain server synchronization.
stop

Stops a domain server synchronization.
delete

Deletes a domain server synchronization.
domain

Is the name of the domain that is added to the synchronization server, not the host name of the
domain server.

Example

This command starts a domain server synchronization:

api.sh -u user -p password -H host sync domain

112 Application Dependency Discovery Manager: SDK Developer's Guide

Topology command
The topology command shows the status of topology groups.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] topology groups

Parameters
topology

Runs the topology command.
groups

Shows the detailed status of topology groups.

Example

This command shows the detailed status of topology groups:

api.sh -u user -p password topology groups

Version command
The version command manages versions in the TADDM.

Command syntax

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] version [-c|--create version-name version-description]

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] version [-e|--createempty version-name version-
description]

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] version [-d|--delete version-id-or-name]

api.sh|api.bat -u|--user user -p|--password password [-H|--host host] [-P|--port
port] [-T|--truststorefile] version getall

Parameters
version

Runs the version command.
-c|--create version-name version-description

Creates a new version with the supplied name.
-e|--createempty version-name version-description

Creates an empty new version with the supplied name.
-d|--delete version-id-or-name

Deletes the specified version.
getall

Displays all existing versions.

Examples

• This command creates a version:

api.sh -u user -p password -H host -P port version -create "version1.0"
 "This is the initial version"

• This command deletes a version:

Chapter 1. SDK Developer's Guide 113

api.sh -u user -p password -H host -P port version -delete "version1.0"

Developing custom server extensions
You can use custom server extensions to discover targets for which TADDM has limited or no specific
built-in support or to add functionality to TADDM.

The custom server extensions provide an Application Programming Interface (API) that you can use to
create programs that set attributes defined in the Common Data Model (CDM) or extended attributes you
have added to the CDM using the Data Management Portal.

These Jython-based extensions run inside the TADDM Discovery Engine which provides the custom
server extensions with a framework to harness many of the sensor building blocks within TADDM.

Custom server extensions offer the following features:

• You can use the TADDM user interface and API to view the discovered attributes.
• Custom server extension messages are written to the Discovery Manager log and to the appropriate

computer system sensor log (or CustomAppServerSensor logs if split sensor logs are enabled).
• No additional software is required to use the system.

Limitation: You cannot use script-based sensors to create custom server extensions.

Limitation: When you extend the discovery on the Windows operating systems to run commands which
return the output with Unicode characters, such characters are not stored.

 In TADDM 7.3.0.3, and later, storing the Unicode characters is supported. However, you must
first send the output to a file and then read the file. The following example shows commands, which you
can use to perform these two operations. In the example, the output of the unicodetest.bat
command is sent to the c:\\r.txt file.

os_handle.executeCommand("c:\\unicodetest.bat | out-file c:\\r.txt")
output = os_handle.executeCommand("cmd.exe /u /c type c:\\r.txt")

Overview
You can use the Data Management Portal and custom server extensions API to set built-in or extended
attributes.

Developing a custom server extension involves identifying the built-in and extended attributes you want
to set and adding the extended attributes to the Common Data Model. After this is done, you need to write
the application to set the attributes and check that the attributes are being collected as expected.

The following outlines the procedure for developing a custom server extension:

1. Identify the built-in or extended attributes you want to collect.
2. If you identified extended attributes, add the attributes to the Common Data Model using the Data

Management Portal.

For more information, see “Managing extended attributes” on page 115.
3. Develop the application to set the attributes using the custom server extensions API.

For more information about the custom server extensions API, see “Custom server extensions API” on
page 115. To see a sample application, refer to “Sample custom server extension application” on page
140.

4. Run the custom server extension application.
5. Using the Data Management Portal, verify that the attributes are being set as expected.

114 Application Dependency Discovery Manager: SDK Developer's Guide

Managing extended attributes
You need to define the extended attributes before you can collect the attributes using your custom server
application.

About this task

You can use the Data Management Portal to add or delete extended attributes for a component type in
the Common Data Model.

Table 30 on page 115 describes the settings that you can specify for extended attributes.

Table 30. Extended attributes

Field Description

Component type The type of component.

Extended attribute name The name of the extended attribute.

Extended attribute type The type for the extended attribute.

Inherited attribute name If this class is a subclass of another class in the
Common Data Model, and if extended attributes
have been defined for the parent class, these
attributes are listed here.

Inherited attribute type The type of the inherited attribute.

Procedure

To specify extended attributes, complete the following steps:
1. Launch the Data Management Portal.
2. Choose Edit > Extended Attributes from the main menu.
3. Choose a component type from the Component type list. The Define Extended Attributes window

displays the currently defined extended attributes for the selected component type.
4. To add an extended attribute, click New. Enter the attribute name and the attribute type in the

corresponding fields and click OK. The system adds the attribute name to the list of extended
attributes.

5. To delete an extended attribute, complete the following steps:
a) Select the corresponding component type from the Component type list.
b) Select the attribute you want to remove in the Define Extended Attributes window.
c) Click Delete.

6. Click OK to save the changes and dismiss the window, or click Cancel to dismiss the window without
saving your changes.

Custom server extensions API
The custom server extensions API provides a set of functions that you can use to create Jython
applications that retrieve information about running processes, run commands, capture files, normalize
data, create new Common Data Model objects, and set attributes or extended attributes in the Common
Data Model.

This section describes what you need to do before starting to use the custom server extensions API, and
then provides an overview of the types of functions available in the API. The section also includes a
description of each class of function available, along with sample code that shows the most common
elements you need to include in your applications.

You can also extend custom server and computer system templates by running Jython scripts. For details,
see the Extending custom server and computer system templates topic in the TADDM User's Guide.

Chapter 1. SDK Developer's Guide 115

Prerequisites to using the custom server extensions API
You must understand key concepts before using the custom server extensions API.

Before you create applications using the custom server extensions API, you should understand the
following concepts:

• Common Data Model (CDM)

If you are using the custom server extensions to create new CDM ModelObjects, you need to set at least
one naming rule otherwise TADDM will not be able to generate a GUID for the object and the sensor in
which the extension runs will fail (issuing a Storage Error).

• How to have the application set up the Jython environment for use with TADDM and the custom server
extensions API.

You can use the sensorstub.py file in the $COLLATION_HOME/lib/sensor-tools directory as the
basis for your custom server extension application. This code acts as a stub which sets up the Jython
environment correctly but performs no operations on the system.

• How to create and manage custom servers.

For more information, see the TADDM User's Guide.

Function overview
The custom server extensions API offers several classes of functions to help you write custom server
extensions.

The custom server extensions API consists of a set of Python functions that you can use to run commands
and manage processes, perform DNS lookups, and gain access to directories and files on remote targets.
The API also provides functions to manipulate media access control (MAC) and IP addresses and use
operating system handles to retrieve information.

The API further supplies a set of utility functions that you can use to perform useful tasks within your
applications.

The following categories of functions are available in the custom server extensions API.

Capability
Use capabilities like ExecuteCapability, MibQueryCapability, or OsInfoCapability.

Command and process
Run commands on a target as well as manage and display process-related information.

DNS and domains
Perform domain name lookups and validate fully qualified domain names.

File access
List directory contents and capture files from remote targets.

IP and MAC address
Manipulate and convert IP and MAC addresses.

Operating system
Create and use operating system handles to retrieve information.

Path
Convert Windows and Unix path separator characters.

Utility
Initialize the custom server API and perform miscellaneous useful tasks.

Version information
Determine the API version numbers.

116 Application Dependency Discovery Manager: SDK Developer's Guide

Capability functions
Capability functions enable you to use capabilities like ExecuteCapability, MibQueryCapability, or
OsInfoCapability. Using capability functions makes it easier for you perform a required operation on a
specified target.

You can use the capabilities function to retrieve the factory responsible for creating capabilities for a
specified target. Table 31 on page 117 describes the functions you can use.

Table 31. Capability functions

Function Description

getSimpleCapabilitiesFactory Returns SimpleCapabilitiesFactory for a given IP
address.

Command and process functions
Command and process functions enable you to run commands on a target as well as manage and display
process-related information.

You can use the command and process functions to run a command on a target, optionally specifying a
timeout value that determines how long the command is permitted to run. You can also use the functions
to add a runtime process to the process pool and return the connection map, port list, runtime process
map, and server processes associated with process identifiers.

Table 32 on page 117 describes the functions you can use.

Table 32. Command and process functions

Function Description

addProcessToPool Add a runtime process to a process pool.

executeCommand Run a command on the target.

executeCommandWithTimeout Run a command on the target with a timeout that
specifies how long the command is permitted to
run.

getPidConnectionMap Return a Python dictionary of Python lists
containing the following information:

• keys: process IDs
• lists: TCP connections of the process IDs

getPidPortList Return a Python dictionary of Python lists
containing the following information:

• keys: process IDs
• lists: the ports the process is using either for

listening or connecting

getPidToRuntimeProcessMap Return a Python dictionary containing the following
information:

• process IDs
• runtime process information

getProcessByPid Return the CDM RuntimeProcess object associated
with a given process ID.

Chapter 1. SDK Developer's Guide 117

Table 32. Command and process functions (continued)

Function Description

getServerProcesses Return a Python dictionary of Python lists
containing the following information:

• keys: process IDs
• lists: bind addresses of the listen ports

Common Data Model functions
Common Data Model functions enable you to manage the Common Data Model.

You can use the Common Data Model (CDM) functions to create and clone new CDM objects and set the
value of extended attributes in CDM objects.

Table 33 on page 118 describes functions you can use.

Table 33. Common Data Model functions

Function Description

cloneModelObject Create a copy of a CDM ModelObject.

newModelObject Create a CDM object.

setExtendedAttributes Set the values of the extended attributes.

DNS and domain functions
DNS and domain functions enable you to perform domain name lookups and validate fully qualified
domain names.

You can use the DNS and domain functions to perform name lookups of the TADDM server and names
extracted from a remote configuration. You can also use the functions to validate a fully qualified domain
name (FQDN).

Table 34 on page 118 describes functions you can use.

Table 34. DNS functions

Function Description

getLocalDNSLookup Perform a name lookup on the TADDM server.

getRemoteDNSLookup Perform a lookup of a name extracted from a
remote configuration which may not resolve on the
TADDM server.

validateFqdn Check an FQDN to ensure it conforms to the rules
outlined in RFC 1035.

File access functions
File access functions enable you to list directory contents and capture files from remote targets.

You can use the file access functions to list the contents of a directory and to capture the contents and
metadata of files on remote targets. Table 35 on page 119 describes the functions you can use.

118 Application Dependency Discovery Manager: SDK Developer's Guide

Table 35. File access functions

Function Description

getFile Capture a file from a remote target and return the
file contents and metadata.

getFileWithLengthLimit Capture a file, up to the specified maximum length,
from a remote target and return the file contents
and metadata.

listDirectory Return a Python list containing the contents of a
directory on a remote target.

IP and MAC address functions
IP and MAC address functions enable you to manipulate and convert IP and MAC addresses.

You can use the IP and MAC address functions to manipulate MAC addresses, validate IP addresses, and
convert IP addresses between different representations. Table 36 on page 119 describes the functions
you can use.

Table 36. IP and MAC address functions

Function Description

binToDot Convert a binary representation of an IP address to
dot notation.

bitsMaskToDottedDecimalMask Convert network bits mask notation to dotted
decimal notation, for example 24 to
255.255.255.0.

calcNetworkAddress Calculate the network address given an IP address
and netmask.

canonicalMac Remove separators or radix notation from a MAC
address and return the hexadecimal MAC address
as a string with alpha characters capitalized.

classlessNotation Calculate the classless notation of an IP network.

dotToBin Convert an IPv4 address from dot notation to
binary form.

ipInSubnet Determine if an IP address is a member of a given
subnet and not the broadcast address.

networkToList Return all IP addresses that are members of the
CDM representation of the IpNetwork parameter.

validateIp Validate an IP address in dot notation.

Operating system functions
Operating system functions enable you to create and use operating system handles to retrieve
information.

You can use the operating system functions to create operating system handles and retrieve information
using these handles. Table 37 on page 120 describes the functions you can use.

Chapter 1. SDK Developer's Guide 119

Table 37. Operating system functions

Function Description

getAppTarget Return the following information:

• the operating system handle for the target
• the result object for the sensor
• the application server object for the target
• the process environment for the target
• the seed object that caused the discovery engine

to spawn the target

getCsTarget Return the following information:

• the operating system handle for the target
• the result object for the sensor
• the computer system object for the target
• the process environment for the target
• the seed object that caused the discovery engine

to spawn the target

getComputerSystem Return an object to which the OS handle is
connected with the attributes populated.

getNewOsHandle Attempt to create a new OS handle to the specified
target. This can be used to communicate with a
machine other than the one for which the custom
sensor is originally launched.

getOperatingSystem Return an object representing the operating
system to which the OS handle is connected.

queryRegistry Return a registry key as XML.

Path functions
Path functions enable you to convert Windows and Unix path separator characters.

You can use the path functions to substitute Microsoft Windows and Unix path separator characters.
Table 38 on page 120 describes the functions you can use.

Table 38. Path functions

Function Description

unixSlashes Substitute Windows path separator characters for
Unix path separators

windowsSlashes Substitute Unix path separator characters for
Windows path separators

120 Application Dependency Discovery Manager: SDK Developer's Guide

Utility functions
Utility functions enable you to initialize the custom server extensions API and perform miscellaneous
useful tasks.

You can use the utility functions to initialize the custom server extensions API. You can create an array in
Python for use with certain Java and TADDM functions as well as splitting command lines into their
components.

Table 39 on page 121 describes the functions you can use.

Table 39. Utility functions

Function Description

findElementsForXPath Queries objects and returns a collection of objects
from the query.

getArray Get an array in Python for use with certain Java
and TADDM functions.

init Initialize the custom server extension API.

splitArgs Split a command line into its components and
return them as a Python sequence.

Version information functions
Version information functions enable you to determine the API version numbers.

You can use the version information functions to determine the major and minor version numbers for the
custom server extensions API, as well as the TADDM version number. Table 40 on page 121 describes the
functions you can use.

Table 40. Version information functions

Function Description

getApiMinorVersion Return the minor version of the API.

getApiVersion Return the major version of the API.

getTADDMVersion Return the TADDM version number.

Function reference
This reference describes each function that is available in the custom server extensions API. The
functions are listed in alphabetical order.

addProcessToPool function
Add a runtime process to a process pool.

Description

The addProcessToPool function adds a Common Data Model (CDM) RuntimeProcess object to a
ProcessPool. You can optionally pass an operating system handle to the function. Otherwise, the OS
handle passed in the targets map to the init function is used by default.

Function syntax

addProcessToPool (rp, pool, *os)

Chapter 1. SDK Developer's Guide 121

Parameters
rp

The CDM RuntimeProcess object
pool

The CDM ProcessPool object
*os

(Optional) The OS handle object

Returns

The function returns the OS handle object connected to the new target.

Exceptions

OsException.

binToDot function
Convert a binary representation of an IP address to dot notation.

Description

The binToDot function converts a binary representation of an IP address to dot notation.

Function syntax

binToDot (binIp)

Parameters
binIp

A Python long containing the binary representation of the IP address

Returns

The function returns the string representation of an IP network address in dot notation.

Exceptions

None.

bitsMaskToDottedDecimalMask function
Convert network bits mask notation to dotted decimal notation.

Description

The bitsMaskToDottedDecimalMask function converts a network bits mask notation representation to a
dotted decimal representation, for example 24 to 255.255.255.0. Note that you should omit the leading /
(slash) in the bits mask. The valid bits counts are 8 and 16-32.

Function syntax

bitsMaskToDottedDecimalMask (bits)

Parameters
bits

The string representation of the number of network bits

122 Application Dependency Discovery Manager: SDK Developer's Guide

Returns

The function returns the dotted decimal form of the address.

Exceptions

None.

calcNetworkAddress function
Calculate the network address given an IP address and netmask.

Description

The calcNetworkAddress function calculates the network address using the specified IP address and
netmask.

Function syntax

calcNetworkAddress (ip)

Parameters
ip

The string representation of the IP address
(mask)

The string representation of the subnet mask

Returns

The function returns the string representation of the IP network address.

Exceptions

None.

canonicalMac function
Remove separators or radix notation from a MAC address and return the hexadecimal MAC address.

Description

The canonicalMac function removes separators or radix notation from a MAC address and returns the
hexadecimal MAC address as a string with alpha characters capitalized.

Function syntax

canonicalMac (mac)

Parameters
mac

The MAC address

Returns

The function returns a string representation of the canonical MAC address.

Exceptions

None.

Chapter 1. SDK Developer's Guide 123

classlessNotation function
Calculate the classless notation of an IP network.

Description

The classlessNotation function calculates the classless notation of an IP network.

Function syntax

classlessNotation (ip, mask)

Parameters
ip

The string representation of the IP network
mask

The string representation of the subnet mask

Returns

The function returns the classless notation in string form.

Exceptions

None.

cloneModelObject function
Create a copy of a Common Data Model ModelObject.

Description

The cloneModelObject function creates a copy of a Common Data Model (CDM) ModelObject, recursing
indefinitely through any child ModelObject attributes.

Function syntax

cloneModelObject (mo)

Parameters
mo

The CDM ModelObject to clone

Returns

The function returns the clone of the CDM ModelObject.

Exceptions

None.

dotToBin function
Convert an IPv4 address from dot notation to binary form.

Description

The dotToBin function converts an IPv4 address from dot notation to binary form.

Function syntax

dotToBin (ip)

124 Application Dependency Discovery Manager: SDK Developer's Guide

Parameters
ip

A string representation of an IP address

Returns

The function returns the IP address in binary form as a Python long type.

Exceptions

NumberFormatException if the IP address is not valid.

executeCommand function
Run a command on the target.

Description

The executeCommand function runs a command on the target using the default command timeout of two
minutes. Note that the function prepends the PATH setting for the target type as specified in the
collation.properties file.

You can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in
the targets map to the init function is used by default.

Function syntax

executeCommand (cmd, *os)

Parameters
cmd

The command string to run
*os

(Optional) The OS handle object

Returns

The function returns a string containing the output of the command.

Exceptions

OsException.

executeCommandWithTimeout function
Run a command on the target with a timeout that specifies how long the command is permitted to run.

Description

The executeCommandWithTimeout function runs a command on the target, with a timeout that specifies
how long the command is permitted to run. Note that the function prepends the PATH setting for the
target type as specified in the collation.properties file.

You can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in
the targets map to the init function is used by default.

Function syntax

executeCommandWithTimeout (cmd, timeout, *os)

Chapter 1. SDK Developer's Guide 125

Parameters
cmd

The command string to run
timeout

The time the command is allowed to run (in milliseconds)
*os

(Optional) The OS handle object

Returns

The function returns a string containing the output of the command.

Exceptions

OsException.

getApiMinorVersion function
Return the minor version of the API.

Description

The getApiMinorVersion function returns the minor version of the custom server extension API.

Function syntax

getApMinoriVersion

Parameters

None

Return

The function returns the minor version number of the API.

Exceptions

None.

getApiVersion function
Return the major version of the API.

Description

The getApiVersion function returns the major version of the custom server extension API.

Function syntax

getApiVersion

Parameters

None

Return

The function returns the major version number of the API.

126 Application Dependency Discovery Manager: SDK Developer's Guide

Exceptions

None.

getAppTarget function
Return a tuple containing information about the application target.

Description

The getAppTarget function returns the following information:

• The operating system handle for the target
• The result object for the sensor
• The application server object for the target
• The process environment for the target
• The seed object that caused the discovery engine to spawn the target

Function syntax

getAppTarget (target)

Parameters
target

The target map

Returns

Returns a tuple containing the OS handle to the target, the result object, the Common Data Model (CDM)
AppServer, the process environment if any, and the seed object.

Exceptions

None.

getArray function
Get an array in Python for use with certain Java and TADDM functions.

Description

The getArray function returns an array in Python for use with certain Java and TADDM functions. The
function uses the Jython jarray module to create the array.

Function syntax

getArray (seq, classname)

Parameters
seq

The Python list or sequence
classname

The fully qualified Java class name matching the type of objects specified in the seq parameter

Returns

The function returns a Java array suitable for passing to Java methods which require an array.

Chapter 1. SDK Developer's Guide 127

Exceptions

None.

getComputerSystem function
Return an object to which the OS handle is connected with the attributes populated.

Description

The getComputerSystem function returns the Common Data Model (CDM) ComputerSystem object to
which the OS handle is connected with the attributes populated.

Function syntax

getComputerSystem (*os)

Parameters
*os

(Optional) The OS handle object

Returns

The functions returns the CDM ComputerSystem object.

Exceptions

OsException.

getCsTarget function
Return a tuple containing information about the target.

Description

The getCsTarget function returns a tuple containing the following information:

• The operating system handle for the target
• The result object for the sensor
• The computer system object for the target
• The process environment for the target
• The seed object that caused the discovery engine to spawn the target

Function syntax

getCsTarget (target)

Parameters
target

The target map passed to the custom server extension.

Returns

The function returns a tuple containing the OS handle to the target, the result object, the CDM
ComputerSystem, and the seed object.

Exceptions

None.

128 Application Dependency Discovery Manager: SDK Developer's Guide

getFile function
Capture a file from a remote target and return the file contents and metadata.

Description

The getFile function captures a file from the remote target and returns a Common Data Model (CDM)
FileSystemContent object containing the file contents and metadata.

Function syntax

getFile (path, *os)

Parameters
path

The path of the file to capture
*os

(Optional) The OS handle object

Returns

The functions returns the CDM FileSystemContent object containing the file contents and metadata.

Exceptions

OsException.

getFileWithLengthLimit function
Capture a file, up to the specified maximum length, from a remote target and return the file contents and
metadata.

Description

The getFileWithLengthLimit function captures a file from the remote target and returns a Common Data
Model (CDM) FileSystemContent object containing the file contents and metadata.

You can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in
the targets map to the init function is used by default.

Function syntax

getFileWithLengthLimit (path, length, *os)

Parameters
path

The path of the file to capture
length

The maximum length to capture (in bytes)
*os

(Optional) The OS handle object

Returns

The function returns a CDM FileSystemContent object containing the file contents and metadata.

Exceptions

OsException.

Chapter 1. SDK Developer's Guide 129

getLocalDNSLookup function
Perform a name lookup on the TADDM server.

Description

The getLocalDNSLookup function performs a name lookup on the TADDM server and returns a Common
Data Model (CDM) DNSLookup object containing the result. The function also accepts an optional OS
handle but, regardless, the lookup is always local.

Function syntax

getLocalDNSLookup (name, *os)

Parameters
name

The name to be resolved
*os

(Optional) The OS handle object

Returns

The function returns the CDM DNSLookup object.

Exceptions

OsException.

getNewOsHandle function
Create a new OS handle to the specified target.

Description

The getNewOsHandle function attempts to create a new OS handle to the specified target. You can use
this to communicate with a machine other than the one for which the custom server extension is originally
launched. An exception is raised if an SSH or WMI session cannot be established using the access lists
currently configured in the TADDM server.

Function syntax

getNewOsHandle (ip)

Parameters
ip

The IP address of the machine to which you want to connect

Returns

The function returns the OS handle object connected to the new target.

Exceptions

OsException.

130 Application Dependency Discovery Manager: SDK Developer's Guide

getOperatingSystem function
Return an object representing the operating system to which the OS handle is connected.

Description

The getOperatingSystem function returns the Common Data Model (CDM) OperatingSystem object
representing the operating system to which the OS handle is connected.

Function syntax

getOperatingSystem (*os)

Parameters
*os

The OS handle object

Returns

The function returns the CDM OperatingSystem object.

Exceptions

OsException.

getPidConnectionMap function
Return a Python dictionary containing the process IDs and TCP connections of the process IDs

Description

The getPidConnectionMap function returns a Python dictionary of Python lists containing the process IDs
as the keys and the lists of TCP connections of the process IDs.

You can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in
the targets map to the init function is used by default.

Function syntax

getPidConnectionMap ()

Parameters

None.

Returns

The function returns a Python dictionary of Python lists containing the following information:

• process IDs
• TCP connections of the process IDs

Exceptions

None.

Chapter 1. SDK Developer's Guide 131

getPidPortList function
Return a Python dictionary containing the process IDs and the ports the process is using either for
listening or connecting.

Description

The getPidPortList function returns a Python dictionary of Python lists containing the process IDs as the
keys and lists of ports the process is using either for listening or connecting.

You can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in
the targets map to the init function is used by default.

Function syntax

getPidPortList (*os)

Parameters
*os

(Optional) The OS handle object.

Returns

The function returns a Python dictionary with the following information:

• process IDs
• Python lists of CDM BindAddress objects

Exceptions

OsException.

getPidToRuntimeProcessMap function
Return a Python dictionary containing the process IDs and runtime process information.

Description

The getPidToRuntimeProcessMap function returns a Python dictionary with the keys containing the
process IDs and the values representing the Common Data Model (CDM) RuntimeProcess objects. You
can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in the
targets map to the init function is used by default.

Function syntax

getPidToRuntimeProcessMap (*os)

Parameters
*os

(Optional) The OS handle object.

Returns

The function returns a Python dictionary with the following information:

• process IDs
• CDM RuntimeProcesses

Exceptions

None.

132 Application Dependency Discovery Manager: SDK Developer's Guide

getProcessByPid function
Return the Common Data Model RuntimeProcess object associated with a given process ID.

Description

The getProcessByPid function returns the Common Data Model (CDM) RuntimeProcess object associated
with the specified process ID. You can optionally pass an operating system handle to the function.
Otherwise, the OS handle passed in the targets map to the init function is used by default.

Function syntax

getProcessByPid (pid, *os)

Parameters
pid

The process ID.
*os

(Optional) The OS handle object

Returns

The function returns the CDM RuntimeProcess object or "None" if the process ID does not exist.

Exceptions

None.

getRemoteDNSLookup function
Perform a lookup of a name extracted from a remote configuration which may not resolve on the TADDM
server.

Description

The getLocalDNSLookup function performs a name lookup on the system specified in the first parameter.
You can use this function to resolve names extracted from remote configurations that may not resolve on
the TADDM server.

Function syntax

getRemoteDNSLookup (ip, name)

Parameters
ip

The IP address of the machine where the lookup is to occur
name

The name to be resolved

Returns

The function returns the CDM DNSLookup object.

Exceptions

OsException.

Chapter 1. SDK Developer's Guide 133

getServerProcesses function
Return a Python dictionary of Python lists containing the process IDs and bind addresses of the listen
ports.

Description

The getServerProcesses function returns a Python dictionary of Python lists of Common Data Model
(CDM) BindAddress objects. You can optionally pass an OS handle to the function. Otherwise, the OS
handle passed in the targets map to the init function is used by default.

Function syntax

getServerProcesses (*os)

Parameters
*os

(Optional) The OS handle object

Returns

Returns a Python dictionary containing the following information:

• process IDs
• CDM BindAddress objects for the listen ports of the process IDs

Exceptions

OsException.

getSimpleCapabilitiesFactory function
Return SimpleCapabilitiesFactory for a given IP address.

Description

The getSimpleCapabilitiesFactory function returns a SimpleCapabilitiesFactory for a given IP address.
SimpleCapabilitiesFactory can be used to retrieve the following capabilities:
ExecuteCapability

This capability allows a command to be run on a given target, regardless of the communication
protocol used.

MibQueryCapability
This capability allows a MIB query to be run on a given target.

OsInfoCapability
This capability allows OS information to be retrieved on a given target.

For more information about these capabilities, see the Javadoc, which is described in “TADDM Javadoc
information” on page 161.

Function syntax

getSimpleCapabilitiesFactory (ip)

Parameters
ip

An IpV4Address object representing the IP address of the target host.

Return

The function returns a SimpleCapabilitiesFactory.

134 Application Dependency Discovery Manager: SDK Developer's Guide

Exceptions

IllegalArgumentException if the IP parameter is null or is not a valid IPv4 address.

getTADDMVersion function
Return the TADDM version number.

Description

The getTADDMVersion function returns the version of TADDM used.

Function syntax

getTADDMVersion

Parameters

None

Returns

The function returns the version of TADDM used.

Exceptions

None.

init function
Initialize the custom server extension API.

Description

The init function initializes the custom server extension API helper routines.

Function syntax

init (target)

Parameters
target

The targets map

Returns

The function returns a tuple containing the following:

• The OS handle to the target
• The result object
• The CDM ComputerSystem or AppServer
• The seed object
• The logger for writing to the sensor log environment (if the target is an AppServer)

Exceptions

None.

Chapter 1. SDK Developer's Guide 135

ipInSubnet function
Determine if an IP address is a member of a given subnet and not the broadcast address.

Description

The ipInSubnet function determines if an IP address is a member of a given subnet and not the broadcast
address.

Function syntax

ipInSubnet (ip, net, mask)

Parameters
ip

A string representation of an IP address
net

A string representation of a network
mask

The subnet mask of the network

Returns

The function returns the following:

• Non-zero if the IP address is a member of the subnet
• 0 if the IP address is not a member of the subnet

Exceptions

None.

listDirectory function
Return a Python list containing the contents of a directory on a remote target.

Description

The listDirectory function returns a Python list of the contents of a directory on a remote target.

Function syntax

listDirectory (path, *os)

Parameters
path

The path of the directory
*os

(Optional) The OS handle object

Returns

The function returns the Python sequence of the contents of the directory.

Exceptions

OsException.

136 Application Dependency Discovery Manager: SDK Developer's Guide

networkToList function
Return all IP addresses that are members of the CDM representation of the IpNetwork parameter.

Description

The networkToList function returns all IP addresses that are members of the Common Data Model (CDM)
representation of the IpNetwork parameter.

Function syntax

networkToList (net)

Parameters
net

A CDM IpNetwork object

Returns

The function returns a Python list of string representations of IP addresses.

Exceptions

None.

newModelObject function
Create a Common Data Model (CDM) object.

Description

The newModelObject function creates a new model object of the specified Common Data Model (CDM)
class type.

Function syntax

newModelObject (classname)

Parameters
classname

The fully qualified CDM class name of the CDM ModelObject to create

Returns

The function returns the new CDM ModelObject.

Exceptions

None.

queryRegistry function
Return a registry key as XML.

Description

The queryRegistry function returns the requested registry key as XML. This function works only if the OS
handle is connected to a Windows target; otherwise the function throws an exception.

You can optionally pass an operating system handle to the function. Otherwise, the OS handle passed in
the targets map to the init function is used by default.

Chapter 1. SDK Developer's Guide 137

Function syntax

getOperatingSystem (key, *os)

Parameters
key

The registry key to fetch
*os

(Optional) The OS handle object

Returns

The function returns the XML representation of the registry key

Exceptions

OsException and MethodNotImplementedException.

setExtendedAttributes function
Set the values of the extended attributes.

Description

The setExtendedAttributes function accepts a Common Data Model (CDM) ModelObject and a Python
dictionary of name-value pairs and sets the name-value pairs as extended attributes for the ModelObject.

Function syntax

setExtendedAttributes (mo, exattrs)

Parameters
mo

The Common Data Model ModelObject
exattrs

The Python dictionary of name-value pairs where the name is the extended attribute name and the
value is a string

Exceptions

IoException.

splitArgs function
Split a command line into its components and return them as a Python sequence.

Description

The splitArgs function splits a command line into its components and returns them as a Python sequence.

Function syntax

splitArgs (cmdline)

Parameters
cmdline

A command line (the parameter must be quoted if it contains embedded spaces)

138 Application Dependency Discovery Manager: SDK Developer's Guide

Returns

The function returns a Python sequence containing the command line tokens.

Exceptions

None.

unixSlashes function
Converts Windows path separator characters to UNIX path separator characters.

Description

The unixSlashes function converts Windows path separator characters to UNIX path separator characters.

Function syntax

unixSlashes (path)

Parameters
path

A file system path which can contain Windows path separators

Returns

The function returns a file system path containing only UNIX path separators.

Exceptions

None.

validateFqdn function
Check a full qualified domain name to ensure it conforms to the rules outlined in RFC 1035.

Description

The validateFqdn function checks a full qualified domain name (FQDN) to ensure that it conforms to the
rules specified in RFC 1035. Note that the Discovery Management Console does not display non-
conforming FQDNs.

Function syntax

validateFqdn (fqdn)

Parameters
fqdn

The fully qualified domain name

Returns

The function returns the following values:

• Non-zero if the FQDN is valid
• 0 if the FQDN is not valid

Exceptions

None.

Chapter 1. SDK Developer's Guide 139

validateIp function
Validate an IP address in dot notation.

Description

The validateIp function validates that a IP address in dot notation is a valid IP address.

Function syntax

validateIp (ip)

Parameters
ip

A string representation of an IP address in dot notation

Returns

The function returns the following values:

• Non-zero if the IP address is valid
• 0 if the IP address is not valid

Exceptions

None.

windowsSlashes function
Converts UNIX path separator characters to Windows path separator characters.

Description

The windowsSlashes function converts UNIX path separator characters to Windows path separator
characters.

Function syntax

windowsSlashes (path)

Parameters
path

A file system path which can contain UNIX path separators

Returns

The function returns a file system path containing only Windows path separators.

Exceptions

None.

Sample custom server extension application
A typical custom server extension application includes several common segments of code.

The following sample custom server extension application shows the standard elements and code
segments that you can include in your applications:

import sys
import java

from java.lang import System
coll_home = System.getProperty("com.collation.home")

140 Application Dependency Discovery Manager: SDK Developer's Guide

System.setProperty("jython.home",coll_home +
"/osgi/plugins/com.ibm.cdb.core.jython_1.0.0/lib")
System.setProperty("python.home",coll_home +
"/osgi/plugins/com.ibm.cdb.core.jython_1.0.0/lib")

jython_home = System.getProperty("jython.home")
sys.path.append(jython_home + "/Lib")
sys.path.append(coll_home + "/lib/sensor-tools")
sys.prefix = jython_home + "/Lib"

import traceback
import string
import re
import jarray
import sensorhelper

############################
LogError Error logger
############################
def LogError(msg):
 log.error(msg)
 (ErrorType, ErrorValue, ErrorTB) = sys.exc_info()
 traceback.print_exc(ErrorTB)

############################
main
############################

try:
 (os_handle, result, appserver,seed,log,env) = sensorhelper.init(targets)

 response = sensorhelper.executeCommand("ssh -V 2>&1")

 if response != None:
 match = re.search("OpenSSH_([^,]+)",response)

 if match != None:
 appserver.setProductVersion(match.group(1))
 appserver.setProductName("OpenSSH")
 appserver.setVendorName("openssh.org")
 else:
 log.info("This ssh server does not appear to be OpenSSH")
 else:
 log.info("'ssh -V' returned no output")
except:
 LogError("unexpected exception getting ssh information")

Explanation of the segments in the sample application
This section describes the segments of the sample custom server extension application.

Initializing the environment
This section of code sets up the environment so that the Jython interpreter can find the standard
Python modules and TADDM sensor tools Python module.

from java.lang import System
coll_home = System.getProperty("com.collation.home")

System.setProperty("jython.home",coll_home +
"/osgi/plugins/com.ibm.cdb.core.jython_1.0.0/lib")
System.setProperty("python.home",coll_home +
"/osgi/plugins/com.ibm.cdb.core.jython_1.0.0/lib")

jython_home = System.getProperty("jython.home")
sys.path.append(jython_home + "/Lib")
sys.path.append(coll_home + "/lib/sensor-tools")
sys.prefix = jython_home + "/Lib"

Importing sensorhelper
This section of code imports the TADDM sensor tools Python module. This code enables the
application to call the custom server extension functions, for example,
sensorhelper.executeCommand(“echo hello world”).

import sensorhelper

Chapter 1. SDK Developer's Guide 141

Logging errors
This section of code logs exception stack traces using the Python traceback module. For regular
logging, you can use the log object returned by the sensorhelper.init() call.

def LogError(msg):
 log.error(msg)
 (ErrorType, ErrorValue, ErrorTB) = sys.exc_info()
 traceback.print_exc(ErrorTB)

Initializing the sensorhelper
This section of code initializes the sensor tools Python module with information about the target of
the discovery that was passed to the custom server extension application by the TADDM discovery
engine.

 (os_handle, result, appserver,seed,log,env) = sensorhelper.init(targets)

Running the command
This section of code calls the sensor tools executeCommand() function to run “ssh –V” on the
discovery target. The resulting output of the command is stored in the response variable.

Typically, a custom server extension must run one or more commands or capture one or more files (or
a combination of the two) to discover the intended target.

 response = sensorhelper.executeCommand("ssh -V 2>&1")

Searching the response
This section of code first checks the response variable to ensure that it is valid (for example, that the
value is not None). The code then uses the Python regular expression module to parse the output
from the ssh –V command stored in the response variable.

 if response != None:
 match = re.search("OpenSSH_([^,]+)",response)

Setting the attributes
This section of code first checks whether the response variable was successfully parsed by the Python
regular expression module (the value of the match variable is not equal to None). If the response
variable was successfully parsed, the ssh version is stored in the productVersion attribute of the
Common Data Model (CDM) AppServer object. Additionally, the productName and vendorName
attributes are set.

 if match != None:
 appserver.setProductVersion(match.group(1))
 appserver.setProductName("OpenSSH")
 appserver.setVendorName("openssh.org")

Setting the object
This section of code stores the CDM AppServer object in the Result object. After the sensor
completes, all CDM ModelObjects contained by the sensor Result object are sent to the TADDM
storage engine to be persisted in the database.

 result.setAppServer(appserver)

Best practices for developing custom server extension applications
You can optimize your custom server extension application by following a set of simple guidelines.

Use the following guidelines when developing custom server extension applications:

• Log the operations performed by the application.

You can use the log object returned by the sensorhelper.init() function to perform logging
operations.

• Use the Python traceback module to log exception stack traces.

142 Application Dependency Discovery Manager: SDK Developer's Guide

If you use the sensorstub.py file in the dist/lib/sensor-tools directory as the basis of your
custom server extension application, the LogError function defined in the file performs this task.

• Increasing the number of model objects in the result object, increases the time required to store the
objects.

TADDM database schema and views
The TADDM database contains all of the configuration items (CIs) managed by a TADDM domain.

The database can be populated with CIs in several different ways:

• TADDM discoveries
• Bulk loading of Discovery Library Adapter (DLA) book files
• Manual adding of CIs using the graphical user interface
• Programmatic adding of CIs through the TADDM application programming interface (API)

CIs in the TADDM database are organized according to their classification within the IBM Tivoli Common
Data Model (CDM). The object types, attributes, relationships, and naming rules for the CDM are
documented in the CDMWebsite.zip file, located in the $COLLATION_HOME/sdk/doc/model directory.
To browse this documentation, extract the .zip file to a new directory, and then open the misc/CDM.htm
file in a Web browser.

For more information about the Tivoli Common Data Model, see “Introducing the Common Data Model”
on page 1.

When developing custom reports for TADDM, you can use SQL queries to retrieve data stored in the
TADDM database. However, rather than querying data directly from the TADDM database tables, reports
should use the TADDM database views. TADDM provides many predefined database views to simplify the
task of writing SQL queries to extract data from the database, and you can also design your own custom
views.

There are four categories of TADDM database views:

• Building block views
• Details panel views
• Custom views
• Extended attributes views

Note: In TADDM 7.3.0.3, and later, the maximum number of characters that column names in
database views can have is 30.

Note: A new view “MSS_INFO_VIEW” has been defined for the user to query the MSS Info
details. User can write a query on this view to fetch the MSS Info specific data. To see the columns that
are defined for this view, user can run the following SQL query:

DESCRIBE TABLE MSS_INFO_VIEW

Related concepts
“TADDM Data Dictionary” on page 159
The TADDM Data Dictionary is a collection of automatically-generated HTML pages that provide a
mapping between information in the Common Data Model (CDM) and information in the TADDM database.

Building block views
You can use the building block views to write queries based on the Tivoli Common Data Model (CDM)
point of view. These views are useful if you are familiar with the CDM; they do not require any knowledge
of where configuration items are stored in the TADDM database base tables.

To see detailed documentation for the building block views, go to the $COLLATION_HOME/etc/views
directory and open one of the following files:

Chapter 1. SDK Developer's Guide 143

• For DB2® databases: create_building_block_views_db2.sql
• For Oracle databases: create_building_block_views_oracle.sql

The comments in these files describe the Common Data Model object types and the corresponding
database views, providing mappings between the Common Data Model and the database schema:

• from CDM object type to building block database view name
• from attribute to database view column name
• from relationship to JOIN syntax

The name of each building block view is in the following form:

BB_%_V

In each view name, the % is the name of the object type. Each object type is mapped to a building block
view, yielding more than 1,000 available building block database views representing object types.

For example, the CDM defines the sys.windows.WindowsComputerSystem object type, which is
stored in the COMPSYS base table in the TADDM database. This table also includes many other object
types that extend the sys.ComputerSystem object type (for example,
sys.LinuxUnitaryComputerSystem).

To query sys.windows.WindowsComputerSystem configuration items from the database using a
building block view, you would query the BB_WINDOWSCOMPUTERSYSTEM20_V database view.

In addition to the views representing object types, more than 800 special views support "many-to-many"
relationships between object types. Each of these mapping-table building block views has a name in the
following form:

BB_%J

For more information about these special views, see “JOIN definitions” on page 145.

View definitions

For each building block view, the comments include a section describing the view and the corresponding
CDM objects. For example, the view definition section of the BB_WINDOWSCOMPUTERSYSTEM20_V
building block view is as follows:

-- ######## model.topology.sys.windows.WindowsComputerSystem ########
--
-- View...... BB_WINDOWSCOMPUTERSYSTEM20_V
-- Class......................... model.topology.sys.windows.WindowsComputerSystem
-- Super classes................. model.topology.sys.ComputerSystem
-- model.topology.core.ManagedElement
-- model.ModelObject
-- model.topology.process.itil.ConfigurationItem

This example shows that the BB_WINDOWSCOMPUTERSYSTEM20_V view corresponds to the
model.topology.sys.WindowsComputerSystem object type, and also lists several superclasses
from which this type also inherits attributes and relationship definitions.

Column definitions for attributes

For each column corresponding to a CDM attribute, the comments include a section describing the
column and the corresponding attribute. For example, the column definition section for the CPUSPEED_C
column of the BB_WINDOWSCOMPUTERSYSTEM20_V view is as follows:

-- Column.... CPUSPEED_C
-- Attribute..................... CPUSpeed
-- Java Type..................... long, primitive
-- Declared By................... model.topology.sys.ComputerSystem

This example shows that the CPUSPEED_C column corresponds to the CPUSpeed attribute defined by the
model.topology.sys.ComputerSystem object type. This attribute is inherited by the

144 Application Dependency Discovery Manager: SDK Developer's Guide

model.topology.sys.WindowsComputerSystem type. It also lists the Java type used to represent
the value of the attribute.

Note: The comments do not list the database type used to store the attribute. You can determine the
database type by using an SQL describe command: Describe command returns multiple columns
including the names of database views, which you can use to query the data displayed in the Details
Panel tab.

db2 describe table BB_WindowsComputerSystem20_V

Column definitions for [0..1] relationships

For each column representing a "zero or one" CDM relationship to another configuration item, the
comments include a section describing the column used for performing the SQL JOIN operation to the
configuration item on the other side of the relationship. For example, the column definition section for the
PK_OSRUNNING_C column of the BB_WINDOWSCOMPUTERSYSTEM20_V view is as follows:

-- Column.... PK__OSRUNNING_C
-- Attribute..................... OSRunning
-- Java Type..................... model.topology.sys.OperatingSystem, notContained
-- Declared By................... model.topology.sys.ComputerSystem

This example shows that the PK__OSRUNNING_C column is used to perform the JOIN operation to the
OperatingSystem table, which represents the OSRunning relationship defined by the
model.topology.sys.ComputerSystem object type. It also shows that the Java type of the attribute
value is, in this case, another CDM type (model.topology.sys.OperatingSystem).

Note: All columns that represent relationships to other configuration items (and are therefore not
primitive types) have names that start with PK__. From a relational database point of view, the value of
such a column is the GUID of the configuration item on the other side of the relationship.

The time stamp column in TADDM 7.3.0.3, and later

In TADDM 7.3.0.3, or later, the building block views contain additional time stamp column. For example,
the view definition section of the LASTSTOREDTIME_C column of the
BB_WINDOWSCOMPUTERSYSTEM20_V view contains additional (timestamp) string:

-- Column.... LASTSTOREDTIME_C
-- Attribute..................... lastStoredTime
-- Java Type..................... long, primitive (timestamp)
-- Declared By................... model.ModelObject

Each time stamp attribute contains the following two columns:

• LASTSTOREDTIME_C, which is set to long type, for example 1445417251307.
• LASTSTOREDTIME_T, which contains human readable time stamp, for example Oct 21, 2015
10:47:31 AM.

Like in case of the original naming convention of the time stamp column, the added column always has
the same suffix, which in this case is _T.

JOIN definitions

For both "zero or one" and "many-to-many" CDM relationship, the comments provide an example SQL
query showing how to accomplish the SQL JOIN operation. For example, the JOIN definition section for
the OSRunning relationship of the BB_WINDOWSCOMPUTERSYSTEM20_V view is as follows:

Chapter 1. SDK Developer's Guide 145

-- Join......
-- Attribute..................... OSRunning
-- Java Type..................... model.topology.sys.OperatingSystem, notContained
-- Declared By................... model.topology.sys.ComputerSystem
-- Test Join..................... SELECT COUNT(1) FROM
-- BB_WINDOWSCOMPUTERSYSTEM20_V T1,
-- BB_OPERATINGSYSTEM62_V T2
-- WHERE T1.PK__OSRUNNING_C = T2.PK_C

Some relationships between configuration items are many-to-many relationships; for example, a
sys.windows.WindowsComputerSystem configuration item might have a relationship to multiple
sys.FileSystem configuration items, represented by a contains relationship using the fileSystems
attribute of sys.windows.WindowsComputerSystem:

-- Join......
-- Attribute..................... fileSystems
-- Java Type..................... Array of model.topology.sys.FileSystem, array
-- Declared By................... model.topology.sys.ComputerSystem
-- Test Join..................... SELECT COUNT(1) FROM
-- BB_WINDOWSCOMPUTERSYSTEM20_V T1,
-- BB_COMPUTERSYSTTEMS_88841D4BJ T2,
-- BB_FILESYSTEM71_V T3
-- WHERE T1.PK_C = T2.PK__JDOID_C
-- AND T3.PK_C = T2.PK__FILESYSTEMS_C

Many-to-many relationships are stored in the intermediary mapping table (in this example, the
BB_COMPUTERSYSTTEMS_88841D4BJ mapping table).

Deprecated views
Some of the building block views become deprecated after changes in Tivoli Common Data Model (CDM)
and will be deleted in the future. Refer to the table with the new equivalents of deprecated views to make
necessary changes.

To make the reports that are already defined work after the upgrade, compatibility views are defined and
marked as deprecated.

If you use any of the views that are listed in the following table, correct your report definition to use new
equivalent view definition.

The following table lists deprecated views that support "many-to-many" relationships between object
types, and their new equivalents.

Table 41. Deprecated views and their new equivalents.

Deprecated view New equivalent

BB_APPCONFIGJDONCES_FCB57E09J BB_SPHYSICALFILNCES_ECF04BA6J

BB_APPCONFIGJDO_ROLES_J BB_SPHYSICALFILEJDO_ROLES_J

BB_APPSERVERCLUNCES_E03E73D6J BB_SGROUPJDO_SENCES_CF68C060J

BB_APPSERVERCLUOLES_F1CF6FA2J BB_SGROUPJDO_ROLES_J

BB_APPSERVERJDONCES_EF1C0CA8J BB_SSOFTWARESERNCES_19E863EFJ

BB_APPSERVERJDO_ROLES_J BB_SSOFTWARESERVERJDO_ROLES_J

BB_COLLECTIONJDNCES_2AB18ECEJ BB_SGROUPJDO_SENCES_CF68C060J

BB_COLLECTIONJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_COMPOSITEJDONCES_C1981AC5J BB_SGROUPJDO_SENCES_CF68C060J

BB_COMPOSITEJDO_MEMBERS_J BB_COLLECTIONJDO_MEMBERS_J

BB_COMPOSITEJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_COMPUTERSYSTEMJDO_ROLES_J BB_SCOMPUTERSYSTEMJDO_ROLES_J

146 Application Dependency Discovery Manager: SDK Developer's Guide

Table 41. Deprecated views and their new equivalents. (continued)

Deprecated view New equivalent

BB_COMPUTERSYSTNCES_611B3FC2J BB_SCOMPUTERSYSNCES_119A868FJ

BB_COMPUTERSYSTNCES_6A2E6F7CJ BB_SGROUPJDO_SENCES_CF68C060J

BB_COMPUTERSYSTOLES_6B483FBCJ BB_SGROUPJDO_ROLES_J

BB_CONFIGURATIONCES_F7B28A51J BB_SFUNCTIONJDONCES_F8394E61J

BB_CONFIGURATIOOLES_33A89807J BB_SFUNCTIONJDO_ROLES_J

BB_DB2DATABASEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_DB2DATABASEJNCES_83C5253DJ BB_SDEPLOYABLECNCES_572F3E83J

BB_DB2SYSTEMJDONCES_6CAED009J BB_SSOFTWAREINSNCES_549D08D8J

BB_DB2SYSTEMJDO_ROLES_J BB_SSOFTWAREINSOLES_7C7BE7E0J

BB_DOMINOCONNECNCES_FAE09606J BB_SPHYSICALFILNCES_ECF04BA6J

BB_DOMINOCONNECOLES_F12CCB72J BB_SPHYSICALFILEJDO_ROLES_J

BB_DOMINODATABANCES_BE00AD89J BB_SDEPLOYABLECNCES_572F3E83J

BB_DOMINODATABASEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_DOMINODOMAINJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_DOMINODOMAINNCES_AC5777E0J BB_SGROUPJDO_SENCES_CF68C060J

BB_EXCHANGEADMINCES_6B41ACDEJ BB_SGROUPJDO_SENCES_CF68C060J

BB_EXCHANGEADMIOLES_5F958B9AJ BB_SGROUPJDO_ROLES_J

BB_EXCHANGEFOLDNCES_EC2EEA5DJ BB_SGROUPJDO_SENCES_CF68C060J

BB_EXCHANGEFOLDOLES_B3A7C77BJ BB_SGROUPJDO_ROLES_J

BB_EXCHANGEMAILNCES_2B5725CJ BB_SGROUPJDO_SENCES_CF68C060J

BB_EXCHANGEMAILOLES_250648DCJ BB_SGROUPJDO_ROLES_J

BB_FABRICJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_FABRICJDO_SENCES_783F8B27J BB_SGROUPJDO_SENCES_CF68C060J

BB_FUNCTIONJDO_NCES_C03DA9D4J BB_SFUNCTIONJDONCES_F8394E61J

BB_FUNCTIONJDO_ROLES_J BB_SFUNCTIONJDO_ROLES_J

BB_HACMPAPPRESONCES_B47F5A8AJ BB_SFUNCTIONJDONCES_F8394E61J

BB_HACMPAPPRESOOLES_229BB16EJ BB_SFUNCTIONJDO_ROLES_J

BB_HACMPLOCALREENTS_F67E36ECJ BB_ITSYSTEMJDO_COMPONENTS_J

BB_HACMPLOCALRENCES_8ADCB6D9J BB_SGROUPJDO_SENCES_CF68C060J

BB_HACMPLOCALREOLES_3C1CF07FJ BB_SGROUPJDO_ROLES_J

BB_HACMPLOCALREOUPS_354DD1CCJ BB_SERVICEGROUPOUPS_82AA2EE3J

BB_HACMPLOCALREROUP_21D3AC87J BB_SERVICEGROUPOUPS_76D12CEDJ

BB_HACMPNODEJDONCES_F0DF78FDJ BB_SFUNCTIONJDONCES_F8394E61J

BB_HACMPNODEJDO_ROLES_J BB_SFUNCTIONJDO_ROLES_J

Chapter 1. SDK Developer's Guide 147

Table 41. Deprecated views and their new equivalents. (continued)

Deprecated view New equivalent

BB_HIRDBSYSTEMJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_HIRDBSYSTEMJNCES_8CDFFAEEJ BB_SGROUPJDO_SENCES_CF68C060J

BB_IDSDATABASEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_IDSDATABASEJNCES_CFB10C79J BB_SDEPLOYABLECNCES_572F3E83J

BB_IPNETWORKJDONCES_E3F0C245J BB_SGROUPJDO_SENCES_CF68C060J

BB_IPNETWORKJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_ITSYSTEMJDO_NCES_31C6E3D2J BB_SGROUPJDO_SENCES_CF68C060J

BB_ITSYSTEMJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_J2EEDOMAINJDNCES_111AC7A0J BB_SGROUPJDO_SENCES_CF68C060J

BB_J2EEDOMAINJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_LINKSERVICEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_LINKSERVICEJNCES_F441B071J BB_SDEPLOYABLECNCES_572F3E83J

BB_LOGICALCONTENCES_F200987CJ BB_SPHYSICALFILNCES_ECF04BA6J

BB_LOGICALCONTENTJDO_ROLES_J BB_SPHYSICALFILEJDO_ROLES_J

BB_MBEXECUTIONGNCES_A5DA5D10J BB_SGROUPJDO_SENCES_CF68C060J

BB_MBEXECUTIONGOLES_6D4906A8J BB_SGROUPJDO_ROLES_J

BB_MBMESSAGEFLONCES_2C1D04EAJ BB_SGROUPJDO_SENCES_CF68C060J

BB_MBMESSAGEFLONCES_EB919DCCJ BB_SGROUPJDO_SENCES_CF68C060J

BB_MBMESSAGEFLOOLES_18E0C30EJ BB_SGROUPJDO_ROLES_J

BB_MBMESSAGEFLOWJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_MQINSTALLABLNCES_EDA0F908J BB_SGROUPJDO_SENCES_CF68C060J

BB_MQINSTALLABLOLES_688C35B0J BB_SGROUPJDO_ROLES_J

BB_MQQUEUEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_MQQUEUEJDO_SNCES_CAE5631FJ BB_SDEPLOYABLECNCES_572F3E83J

BB_MSCLUSTERJDONCES_61127DF8J BB_SGROUPJDO_SENCES_CF68C060J

BB_MSCLUSTERJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_MSCLUSTERNODEJDO_ROLES_J BB_SFUNCTIONJDO_ROLES_J

BB_MSCLUSTERNODNCES_3899EF16J BB_SFUNCTIONJDONCES_F8394E61J

BB_MSCLUSTERRESNCES_22175CCFJ BB_SGROUPJDO_SENCES_CF68C060J

BB_MSCLUSTERRESNCES_A728F28AJ BB_SGROUPJDO_SENCES_CF68C060J

BB_MSCLUSTERRESOLES_324E6849J BB_SGROUPJDO_ROLES_J

BB_MSCLUSTERRESOLES_3A01196EJ BB_SGROUPJDO_ROLES_J

BB_NETWORKSERVICEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_NETWORKSERVINCES_CDD7C865J BB_SDEPLOYABLECNCES_572F3E83J

148 Application Dependency Discovery Manager: SDK Developer's Guide

Table 41. Deprecated views and their new equivalents. (continued)

Deprecated view New equivalent

BB_ORACLEDATABANCES_98E1A333J BB_SDEPLOYABLECNCES_572F3E83J

BB_ORACLEDATABASEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_ORACLELISTENERJDO_ROLES_J BB_SSOFTWARESERVERJDO_ROLES_J

BB_ORACLELISTENNCES_72725D9AJ BB_SSOFTWARESERNCES_19E863EFJ

BB_ORACLESERVERJDO_ROLES_J BB_SSOFTWAREINSOLES_7C7BE7E0J

BB_ORACLESERVERNCES_6F134AEBJ BB_SSOFTWAREINSNCES_549D08D8J

BB_REALSERVERGRNCES_91B57D2EJ BB_SGROUPJDO_SENCES_CF68C060J

BB_REALSERVERGROUPJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_REALSERVERJDNCES_8B01D2CBJ BB_SSOFTWARESERNCES_19E863EFJ

BB_REALSERVERJDO_ROLES_J BB_SSOFTWARESERVERJDO_ROLES_J

BB_SAMETIMESERVERJDO_ROLES_J BB_SFUNCTIONJDO_ROLES_J

BB_SAMETIMESERVNCES_7FDA5716J BB_SFUNCTIONJDONCES_F8394E61J

BB_SEGMENTJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_SEGMENTJDO_SNCES_CBC65999J BB_SGROUPJDO_SENCES_CF68C060J

BB_SERVICEGROUPROUP_6F30099EJ BB_SERVICEGROUPOUPS_76D12CEDJ

BB_SERVICEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_SERVICEJDO_SNCES_63DE5757J BB_SDEPLOYABLECNCES_572F3E83J

BB_SMSHIERARCHYJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_SMSHIERARCHYNCES_C6234B50J BB_SGROUPJDO_SENCES_CF68C060J

BB_SMSSITECOMPONCES_FC696136J BB_SDEPLOYABLECNCES_572F3E83J

BB_SMSSITECOMPOOLES_37331E42J BB_SDEPLOYABLECOLES_C2D28F15J

BB_SOFTWARECOMPNCES_5E176596J BB_SDEPLOYABLECNCES_572F3E83J

BB_SOFTWARECOMPOLES_AA1C15E2J BB_SDEPLOYABLECOLES_C2D28F15J

BB_SOFTWAREINSTNCES_EECCCFCBJ BB_SSOFTWAREINSNCES_549D08D8J

BB_SOFTWAREINSTOLES_B502FACDJ BB_SSOFTWAREINSOLES_7C7BE7E0J

BB_SOFTWAREMODULEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_SOFTWAREMODUNCES_1FEAE999J BB_SDEPLOYABLECNCES_572F3E83J

BB_SPECIALITYSENCES_A28738B4J BB_SFUNCTIONJDONCES_F8394E61J

BB_SPECIALITYSEOLES_33910984J BB_SFUNCTIONJDO_ROLES_J

BB_SQLSERVERDATNCES_4C800F20J BB_SDEPLOYABLECNCES_572F3E83J

BB_SQLSERVERDATOLES_E33DFE98J BB_SDEPLOYABLECOLES_C2D28F15J

BB_STORAGEEXTENNCES_614C0287J BB_SDEPLOYABLECNCES_572F3E83J

BB_STORAGEEXTENTJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_STORAGEPOOLJDO_ROLES_J BB_SGROUPJDO_ROLES_J

Chapter 1. SDK Developer's Guide 149

Table 41. Deprecated views and their new equivalents. (continued)

Deprecated view New equivalent

BB_STORAGEPOOLJNCES_AC507A15J BB_SGROUPJDO_SENCES_CF68C060J

BB_SYBASEDATABANCES_DFF7B51AJ BB_SDEPLOYABLECNCES_572F3E83J

BB_SYBASEDATABASEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_SYSPLEXJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_SYSPLEXJDO_SNCES_4B3FE470J BB_SGROUPJDO_SENCES_CF68C060J

BB_VCSSYSTEMJDONCES_831828D7J BB_SGROUPJDO_SENCES_CF68C060J

BB_VCSSYSTEMJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_WEBLOGICMACHINEJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_WEBLOGICMACHNCES_41F6228FJ BB_SGROUPJDO_SENCES_CF68C060J

BB_WEBLOGICNODENCES_1032390BJ BB_SSOFTWARESERNCES_19E863EFJ

BB_WEBLOGICNODEOLES_14E2D98DJ BB_SSOFTWARESERVERJDO_ROLES_J

BB_WEBSPHERENODEJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_WEBSPHERENODNCES_182E84E9J BB_SGROUPJDO_SENCES_CF68C060J

BB_WINDOWSSERVICEJDO_ROLES_J BB_SDEPLOYABLECOLES_C2D28F15J

BB_WINDOWSSERVINCES_9F30EF3AJ BB_SDEPLOYABLECNCES_572F3E83J

BB_ZONEJDO_ROLES_J BB_SGROUPJDO_ROLES_J

BB_ZONEJDO_SERVICEINSTANCES_J BB_SGROUPJDO_SENCES_CF68C060J

Details pane views
You can use the detail_panel_views.txt file to write queries and retrieve additional information.
These views are most useful if you are familiar with the Details pane in the Data Management Portal.

To see a listing of available Details pane views, go to the $COLLATION_HOME/etc/views directory and
open the detail_panel_views.txt file. This file lists all of the Detail panes available in the Data
Management Portal, along with the corresponding database views. The name of each Details pane view is
in the following form:

DP_%_V

In each view name, the % is the name of the Details pane in the Data Management Portal. There are more
than 600 Details pane views.

Additional information about these views is available as comments in the following files in the same
directory:

• For DB2 databases: create_detail_panel_views_db2.sql
• For Oracle databases: create_detail_panel_views_oracle.sql

View definitions

The Details pane views are organized according to the Common Data Model object types of the
configuration items shown in the Details pane. To find the views for a particular configuration item, in the
Details pane, click the General tab and find the value in the Object Type field. You can then find the
object type in the detail_panel_views.txt file, which identifies the corresponding views.

150 Application Dependency Discovery Manager: SDK Developer's Guide

For example, the detail_panel_views.txt file includes the following entry for the DB2 Instance object
type:

########## DB2 Instance...<Layout> ##########
...General...<Tab Level 1>
......General..<TabData>
......Db2Instance.General......................................<Content>
.........DP_DB2_INSTANCE_GENERAL_V................................<View>
...System..<Tab Level 1>
......System Info..<TabData>
......Db2Instance.SystemInfo...................................<Content>
.........DP_DB2_INSTANCE_SYSTEM_INFO_V............................<View>
......Profile Registry...<TabData>
......Db2Instance.GlobalProfileRegistry........................<Content>
.........DP_DB2_INSTANCE_GLOB_PROFREG_V...........................<View>
......License Info...<TabData>
......Db2Instance.LicenseInfo..................................<Content>
.........DP_DB2_INSTANCE_LICENSE_INFO_V...........................<View>
...Configuration...<Tab Level 1>
......Configuration..<TabData>
......Db2Instance.Configuration................................<Content>
.........DP_DB2_INSTANCE_CONFIG_V.................................<View>
...Profile Registry..<Tab Level 1>
......Profile Registry...<TabData>
......Db2Instance.ProfileRegistry..............................<Content>
.........DP_DB2_INSTANCE_PROFILE_REG_V............................<View>
...Databases...<Tab Level 1>
......Databases..<TabData>
......Db2Instance.Databases....................................<Content>
.........DP_DB2_INSTANCE_DATABASES_V..............................<View>
...Remote Databases..<Tab Level 1>
......Remote Databases...<TabData>
......Db2Instance.Db2Alias.....................................<Content>
.........DP_DB2_INSTANCE_DB2_ALIAS_V..............................<View>
...Modules...<Tab Level 1>
......Software Modules...<TabData>
......AppServer.SoftwareModules................................<Content>
.........DP_APP_SERVER_SW_MODULES_V...............................<View>
......Other Modules..<TabData>
......AppServer.StaticModules..................................<Content>
.........DP_APP_SERVER_STATIC_MOD_V...............................<View>
...Application Descriptors.................................<Tab Level 1>
......Application Descriptors..................................<TabData>
......AppServer.ApplicationDescriptors.........................<Content>
.........DP_APP_SERVER_APP_DESCRIPS_V.............................<View>
...Runtime...<Tab Level 1>
......Databases..<TabData>
......Db2Instance.Runtime......................................<Content>
.........DP_DB2_INSTANCE_RUNTIME_V................................<View>

This example shows that the General tab for the DB2 instance object type corresponds to the
DP_DB2_INSTANCE_GENERAL_V database view. It also lists the additional database views available for
the other tabs (some of which are represented by multiple views).

You can query these views to retrieve information about the configuration items that TADDM has
discovered. For example, you can retrieve data from the Databases tab of DB2 Instance by querying the
DP_DB2_INSTANCE_DATABASES_V database view. Selecting every element from this view returns the
contents of the Database tab for all DB2 instances TADDM has discovered. You can limit this query to a
single DB2 instance by joining the DP_DB2_INSTANCE_DATABASES_V view to the
DP_DB2_INSTANCE_GENERAL_V view and filtering by the instance name (see “Example query” on page
152).

To see more information about how these views are defined, look at the comments in the
create_detail_panel_views_db2.sql or create_detail_panel_views_oracle.sql file. The following comment
block provides information about the nodes, or CDM object types, referred to by the
DP_DB2_INSTANCE_DATABASES_V view:

Chapter 1. SDK Developer's Guide 151

-- ######## Db2Instance.Databases ########
--
-- View...... DP_DB2_INSTANCE_DATABASES_V
--
-- Node...... 1
-- Node Path..................... Db2Instance
-- Node Class Name............... model.topology.app.db.db2.Db2Instance
-- Node Type..................... Root
-- Node...... 2
-- Node Path..................... Db2Instance._arraydatabases
-- Node Class Name............... model.topology.app.db.db2.Db2Database
-- Node Field Name............... databases
-- Node Type..................... Array Many-to-Many
-- Node...... 3
-- Node Path..................... Db2Instance._arraydatabases.databases
-- Node Class Name............... model.topology.app.db.db2.Db2Database
-- Node Field Name............... databases
-- Node Type..................... Array

Nodes and columns

To see how the view columns are defined, you can run a SQL describe query. For example, the following
query shows the columns of the DP_DB2_INSTANCE_DATABASES_V view:

db2 "describe table DP_DB2_INSTANCE_DATABASES_V"

Column Type Type
name schema name Length Scale Nulls
------------------------------ --------- ------------------ -------- ----- ------
NAME_C3 SYSIBM VARCHAR 192 0 Yes
ALIAS_C3 SYSIBM VARCHAR 192 0 Yes
PK_C3 SYSIBM VARCHAR 192 0 Yes
PK_C1 SYSIBM VARCHAR 192 0 No

Each column name ends with a numeral identifying the node the column represents. This example shows
that the NAME_C3, ALIAS_C3, and PK_C3 columns all refer to the Db2Database object type, and the
PK_C1 column refers to the Db2Instance object type.

Note: In this example, no column refers to node 2, because the referenced table is the many-to-many
mapping table connecting DB2Instances with DB2Databases. The Details panel abstracts the
complexities of joining these two tables, it is not necessary to determine where the data is stored in the
base tables.

Example query

Using all of this information, you can see a list of DB2 databases defined for a particular instance by using
this query:

select
 db.name_c3
from
 DP_DB2_INSTANCE_GENERAL_V inst
 join DP_DB2_INSTANCE_DATABASES_V db ON (inst.PK_C1 = db.PK_C1)
where
 inst.db2_instance_c1 = 'bg-linux.tivlab.austin.ibm.com:db2inst1'

This query joins the views corresponding to the General and Databases tabs, by using the PK_C1 column
(which represents the primary key of the DB2 instance) and selecting the database names. The results
are then filtered to include only the instance labeled bg-linux.tivlab.austin.ibm.com:db2inst1.

Custom views
Custom views are provided to extract data from the TADDM database and to aid in the creation of reports.
TADDM provides two custom views which are defined in the custom-views.xml file. You can also define

152 Application Dependency Discovery Manager: SDK Developer's Guide

views called user-defined views if the existing building block views and Details panel views do not provide
what you need.

A custom view is defined by using XML, which is then processed by TADDM scripts to produce the
required CREATE VIEW SQL statements. A custom view is built from existing building-block views, but
the TADDM scripts determine how to join these views together.

TADDM includes a custom view called CM_COMPUTER_SYSTEMS_V, which is described in the following
examples. This view provides basic information that can be used in a report about computer systems that
TADDM has discovered:

• Fully qualified host name
• Manufacturer, model, serial number, and type of the chassis
• Type, number, and speed of the CPUs
• RAM size
• Operating system
• IP addresses of all adapters
• Total storage capacity and free space for all file systems

These attributes come from many different Common Data Model object types:

• ComputerSystem
• OperatingSystem
• IPInterface
• IPAddress
• FileSystem

In addition, the data includes two many-to-many relationships:

• ComputerSystem to IPInterface
• ComputerSystem to FileSystem

To manually write a query for this information, you must first identify all of the building-block views
representing the CDM types and relationships. Then you must determine how to join them together. By
defining a user view, you can use the TADDM scripts to automatically define the required joins and
generate the SQL to create the views you require.

User-defined views XML

User-defined views like custom views are built from an xml definition. To create a user-defined view carry
out the following steps:

1. Copy the custom-views.xml file from the $COLLATION_HOME/etc/views directory to the
$COLLATION_HOME/bin directory.

2. Rename the file custom-views.xml as user-views.xml.
3. Change the view name CM_COMPUTER_SYSTEMS_V and CM_APP_SERVERS_PER_HOST_V in the
user-views.xml file. These views are reserved by TADDM and must not be overwritten. Modify the
rest of the file as required.

Chapter 1. SDK Developer's Guide 153

Element Attributes Contained elements

view className
The base model object class name of the view.

viewName
The name of the view. The name must be a string
starting with CM_ and ending with _V, with a
maximum length of 30 characters. Avoid names
that are already in use.

includePrimaryKeys
Whether primary keys are included as columns.
Must be true or false. Specify true if the view
is to be joined with other views.

field

field None nested
plain

nested className
The model object class name of the nested.

fieldName
The field name of the nested

nested
plain

plain fieldName
The field name of the plain

nameInView
The name of the column to expose in the database
view. The maximum length is 30 characters. Avoid
DB2 or Oracle reserved words.

displayType
The type of value. This attribute is optional.
Specify one of the following values:
speed

A value in MHz
memory

A value in KB, MB, or GB
mBytes

A value in MB
date

A timestamp in YYYY-MM-DD-HH24:MI:SS
format, used for fields containing epoch time in
milliseconds

networkSpeed
A value in megabits per second

StorageGBytes
A value in GB

None

The XML describes two types of fields, both of which are contained within the field element:

• A plain field represents an attribute of a model object. For example, the following plain field specifies
that the FQDN (fully qualified domain name) attribute of ComputerSystem is displayed in the view as
the FQDN column:

<plain fieldName="fqdn" nameInView="FDQN"/>

154 Application Dependency Discovery Manager: SDK Developer's Guide

• A nested field represents a relationship between model objects. For example, the following nested field
describes the relationship from ComputerSystem to OperatingSystem through the OSRunning
attribute of the ComputerSystem object type:

<field>
 <nested className="com.collation.platform.model.topology.sys.OperatingSystem"
 fieldName="OSRunning">
 <plain fieldName="OSName" nameInView="OS_NAME"/>
 </nested>
</field>

Within the nested field, a plain field specifies that the operating system name is displayed in the view as
the OS_NAME column.

The full XML definition of the CM_COMPUTER_SYSTEMS_V view is as follows:

<views>
 <!-- ComputerSystems with OS, Filesystems -->
 <view className="com.collation.platform.model.topology.sys.ComputerSystem"
 viewName="CM_COMPUTER_SYSTEMS_V" includePrimaryKeys="false">
 <field>
 <plain fieldName="fqdn" nameInView="FDQN"/>
 </field>
 <field>
 <nested className="com.collation.platform.model.topology.net.IpInterface"
 fieldName="ipInterfaces">
 <nested className="com.collation.platform.model.topology.net.IpAddress"
 fieldName="ipAddress">
 <plain fieldName="dotNotation" nameInView="IP_ADDRESS"/>
 <plain fieldName="stringNotation" nameInView="IP_ADDRESS_STRING"/>
 </nested>
 </nested>
 </field>
 <field>
 <nested className="com.collation.platform.model.topology.sys.OperatingSystem"
 fieldName="OSRunning">
 <plain fieldName="OSName" nameInView="OS_NAME"/>
 </nested>
 </field>
 <field>
 <plain fieldName="CPUType" nameInView="CPU_TYPE"/>
 <plain fieldName="numCPUs" nameInView="NUM_CPUS"/>
 <plain displayType="speed" fieldName="CPUSpeed" nameInView="CPU_SPEED"/>
 <plain displayType="memory" fieldName="memorySize" nameInView="MEMORY_SIZE"/>
 <plain fieldName="primaryMACAddress" nameInView="PRIMARY_MAC_ADDRESS"/>
 <plain fieldName="serialNumber" nameInView="SERIAL_NUMBER"/>
 <plain fieldName="manufacturer" nameInView="MANUFACTURER"/>
 <plain fieldName="model" nameInView="MODEL"/>
 <plain fieldName="type" nameInView="SYSTEM_TYPE"/>
 </field>
 <field>
 <nested className="com.collation.platform.model.topology.sys.FileSystem"
 fieldName="fileSystems">
 <plain displayType="mBytes" fieldName="capacity" nameInView="CAPACITY"/>
 <plain displayType="mBytes" fieldName="availableSpace"
 nameInView="AVAILABLE_SPACE"/>
 <plain fieldName="displayName" nameInView="FILE_SYSTEM"/>
 </nested>
 </field>
 </view>

 <!-- AppServers with host -->
 <view className="com.collation.platform.model.topology.app.AppServer"
 viewName="CM_APP_SERVERS_PER_HOST_V" includePrimaryKeys="false">
 <field>
 <nested className="com.collation.platform.model.topology.sys.ComputerSystem"
 fieldName="host">
 <plain fieldName="fqdn" nameInView="FQDN"/>
 <nested className="com.collation.platform.model.topology.net.IpInterface"
 fieldName="ipInterfaces">
 <nested className="com.collation.platform.model.topology.net.IpAddress"
 fieldName="ipAddress">
 <plain fieldName="dotNotation" nameInView="IP_ADDRESS"/>
 <plain fieldName="stringNotation" nameInView="IP_ADDRESS_STRING"/>
 </nested>
 </nested>
 </nested>
 </field>

Chapter 1. SDK Developer's Guide 155

 <field>
 <plain fieldName="jdoClassName" nameInView="CLASS_NAME"/>
 <plain fieldName="objectType" nameInView="TYPE"/>
 <plain fieldName="productName" nameInView="PRODUCT_NAME"/>
 <plain fieldName="productVersion" nameInView="PRODUCT_VERSION"/>
 <plain fieldName="keyName" nameInView="KEY_NAME"/>
 <plain fieldName="name" nameInView="NAME"/>
 </field>
 </view>
</views>

Adding user views to the database

After you have defined your user views in the user-views.xml file, follow these steps to create the
views in the database:

1. At a command prompt, go to the $COLLATION_HOME/bin directory.
2. Run one of the following commands to create the required SQL scripts:

• UNIX and Linux systems: user_views.sh scripts
• Windows systems: user_views scripts

This command creates the following files:

• create_custom_views_db2.sql
• create_custom_views_oracle.sql
• drop_custom_views_db2.sql
• drop_custom_views_oracle.sql

3. Run one of the following commands to create the views in your database:

• UNIX and Linux systems: user_views.sh recreate
• Windows systems: user_views recreate

This command runs the appropriate SQL script for your database type.

After you run these commands, your user views are available for querying in the database. Any SQL
queries you implement must provide the necessary filtering of data returned from these views (for
example, by using the SQL WHERE clause).

Modifying user views

To modify user views that exist in the database:

1. Edit the user-views.xml file to make the necessary changes.
2. Repeat the process of creating the views by using the user_views command. This command

automatically generates and runs the correct SQL scripts to drop and then re-create any changed
views.

Note: If you rename a user view, you must manually drop the view with the original name before
running the commands to create the view with the new name.

Deleting user views

To delete a user view from the database, run the appropriate SQL DROP command for your database. The
DROP commands for the user views are generated by the user_views command in the following files:

• drop_custom_views_db2.sql
• drop_custom_views_oracle.sql

156 Application Dependency Discovery Manager: SDK Developer's Guide

Extended attributes views
The extended attributes view tool generates database views that reference the data for extended
attributes.

For each model object that has extended attributes, the tool creates an SQL script that when run, creates
two extended attribute views:

• EA_model_V that has columns corresponding to the extended attributes. Each extended attribute can
be joined to the corresponding building block view, BB_model_V, using the PK_C column.

• BE_model_V that has columns corresponding to the Common Data Model attributes and to
the extended attributes. When the column name conflict occurs, the extended attribute columns might
not be present.

All extended attributes on the same model object type are in the same database view.

The scripts depend on the current definitions of extended attributes. The tool does not check the
attributes that were created and removed, even though such attributes with values are still assigned to
some objects. If you modify an extended attribute, you must drop the existing view before you use the
extended attribute view tool to create an updated SQL script and an updated attribute view.

Data type modification

In TADDM 7.3.0.2, and earlier, the extattr_views.sh script creates extended attributes views with
columns of type CLOB. Starting with 7.3.0.3, the views contain data of specific types, for example,
VARCHAR, or SMALLINT. The following table provides the new column types in the extended attributes
views in DB2 and Oracle databases.

Table 42. Extended attributes views column types in DB2 and Oracle databases

GUI type Column type in DB2 Column type in Oracle

String VARCHAR(32000) VARCHAR2(4000)

Character VARCHAR(4) VARCHAR2(4)

Double precision floating point DOUBLE NUMBER

Floating point REAL NUMBER

Boolean SMALLINT NUMBER(1)

Integer INTEGER NUMBER

Short integer SMALLINT NUMBER

Long integer BIGINT NUMBER

Such modification might affect integration with products that use TADDM database views for extended
attributes. For example, if you use BIRT reports, errors might be generated if extended attributes columns
are not cast to a specific data type, for example, VARCHAR.

Note: In TADDM 7.3.0.2, and earlier, extended attributes of the boolean type are displayed as false, or
true in the database views. In TADDM 7.3.0.3, and later, the value is an integer, either 0, or 1. It means
that the BIRT and Cognos reports that were created before this change are not compatible with the new
data types.

The extattr_views.sh command syntax
To use the extattr_view tool, run the extattr_views.sh command, with an appropriate command-line
parameter. The extattr_views.sh command is in the $COLLATION_HOME/bin directory.

Command syntax

extattr_views.sh parameter

Chapter 1. SDK Developer's Guide 157

Parameters
scripts

Creates the following SQL scripts:

• create_extattr_views_db_type.sql
• drop_extattr_views_db_type.sql

where db_type is one of the following database types:

• db2
• oracle

create
Creates the views.

remove
Drops the views. The corresponding SQL scripts are not removed.

Running the extended attributes view tool
You can use the extended attributes view tool to generate a database view that corresponds to an existing
extended attribute.

Procedure

To create a corresponding view for an extended attribute, complete the following steps:
1. Create an extended attribute on the model object.
2. Use the extended attributes view tool to create the required SQL scripts:

extattr_views.sh scripts

3. Use the extended attributes view tool to create the view:

extattr_views.sh create

4. Optional: Query the data using an SQL command.

Example
For example, if you create an extended attribute called 'SUPPORT_AREA' on the ComputerSystem model
type, running the extended attributes view tool creates two views:

• EA_COMPUTERSYSTEM40_V
The new view has the following columns:

– PK_C, which contains the primary key.
– SUPPORT_AREA_C, which contains the extended attributes.

• BE_COMPUTERSYSTEM40_V
The new view has the following columns:

– All columns from the building block view BB_COMPUTERSYSTEM40_V, for example PK_C, NAME_C,
VMID_C.

– SUPPORT_AREA_C, which contains the extended attributes, only if there is no column name conflict
with the columns from the building block view BB_COMPUTERSYSTEM40_V.

You can use the following SQL commands to query the data:

SELECT
 T1.FQDN_C,
 T2.SUPPORT_AREA_C
 FROM
 BB_COMPUTERSYSTEM40_V T1,
 EA_COMPUTERSYSTEM40_V T2

158 Application Dependency Discovery Manager: SDK Developer's Guide

 WHERE
 T1.PK_C = T2.PK_C

SELECT
 FQDN_C, SUPPORT_AREA_C
 FROM
 BE_COMPUTERSYSTEM40_V

Note: If a column name conflict occurs, the tool tries to add extended attribute category string.
If this does not resolve the problem, the extended attribute column is not included in the BE_model_V
views.

TADDM Data Dictionary
The TADDM Data Dictionary is a collection of automatically-generated HTML pages that provide a
mapping between information in the Common Data Model (CDM) and information in the TADDM database.

Accessing the Data Dictionary

The Data Dictionary is available in the following locations on a storage server (in a streaming server
deployment), a synchronization server (in a synchronization server deployment), or a domain server (in a
domain server deployment):

• At http://taddmserverhost:port/cdm/datadictionary/, for example http://
1.123.123.12:9430/cdm/datadictionary/

• In the taddm-data-dictionary.zip file that is in the $COLLATION_HOME/sdk/datadictionary
and $COLLATION_HOME/deploy-tomcat/cdm/datadictionary (TADDM 7.3.0), or
$COLLATION_HOME/apps/cdm/datadictionary (TADDM 7.3.0.1, and later) directories.

To use the taddm-data-dictionary.zip file, complete the following steps:

1. Extract the contents of the taddm-data-dictionary.zip file to a location of your choice.
2. Extract the $COLLATION_HOME/sdk/doc/model/CDMWebsite.zip file to the data-
dictionary/cdm directory of the extracted Data Dictionary structure.

Indexes

The Data Dictionary includes the following indexes:
Building Block Views Index

The index is available at:

http://taddmserverhost:port/cdm/datadictionary/bb-views/index.html

From the index, click the name of a building block view. The following information is displayed:

• The TADDM database table from which the respective building block view is populated. Each table
name links to a definition of the database table.

• Columns in the respective building block view. Each column name links to the CDM definition of the
attribute that is represented by the column.

Model Objects Index

The index is available at:

http://taddmserverhost:port/cdm/datadictionary/model-object/index.html

From the index, click the name of a CDM class. The following information is displayed:

• TADDM database tables that contain the respective CDM class. Each table name links to a definition
of the database table.

Chapter 1. SDK Developer's Guide 159

• Building block views that contain the respective CDM class. Each building block view name links to a
definition of the building block view.

Model Object Tables Index

The index is available at:

http://taddmserverhost:port/cdm/datadictionary/cdm-tables/index.html

From the index, click the name of a TADDM database table. The following information is displayed:

• The CDM class that declares the respective database table. The CDM class name links to a definition
of the class.

• CDM classes that the respective database table contains. Each CDM class name links to a definition
of the class.

• Columns in the respective database table. Each column name links to the CDM definition of the
attribute that is represented by the column.

Data Discovered By Sensors Index

The index is available at:

http://taddmserverhost:port/cdm/datadictionary/sensors/index.html

From the index, click the name of a sensor. The following information is displayed:

• General information about the sensor.
• The CDM class of model objects that are discovered by the sensor. Each CDM class name links to a
definition of the class.

• Attributes of the CDM classes and information about their availability in the context of the sensor.

Potential Data To Discover Index

The index is available at:

http://taddmserverhost:port/cdm/datadictionary/sensors/potentialData.html

From the index, click the name of a category. The names of data types that belong to the respective
category are displayed.

Click the name of a data type. The following information is displayed:

• General information about the sensor that discovers the respective data type
• The CDM class of model objects that are discovered by the sensor. Each CDM class name links to a
definition of the class.

• Attributes of the CDM classes

Additional indexes
In the datadictionary/cdm directory of Data Dictionary you can also find the following indexes:

• Class Index at http://taddmserverhost:port/cdm/datadictionary/cdm/classes/
$index.htm

• Interface Index at http://taddmserverhost:port/cdm/datadictionary/cdm/
interfaces/$index.htm

• Attribute Index at http://taddmserverhost:port/cdm/datadictionary/cdm/
attributes/$index.htm

• Relationship Index at http://taddmserverhost:port/cdm/datadictionary/cdm/
relationships/$index.htm

• Datatype Index at http://taddmserverhost:port/cdm/datadictionary/cdm/
datatypes/$index.htm

160 Application Dependency Discovery Manager: SDK Developer's Guide

• Naming Rule Index at http://taddmserverhost:port/cdm/datadictionary/cdm/
namingrules/$index.htm

TADDM Javadoc information
You can used the Javadoc information that is included with TADDM to find out more about the APIs that
are available.

The following compressed files contain TADDM Javadoc information:
$COLLATION_HOME/sdk/doc/api/oalapi-javadoc.zip

This file contains information about the available TADDM Java API.
$COLLATION_HOME/sdk/doc/api/taddmapi-javadoc.zip

This file contains information about the available TADDM Java API.
$COLLATION_HOME/sdk/doc/capabilities/capabilities-javadoc.zip

This file contains information about the capabilities functionality that you can use.
$COLLATION_HOME/sdk/doc/model/model-javadoc.zip

This file contains information about the Common Data Model objects used by TADDM.

Chapter 1. SDK Developer's Guide 161

162 Application Dependency Discovery Manager: SDK Developer's Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

© Copyright IBM Corp. 2006, 2020 163

Such information may be available, subject to appropriate terms and conditions, including in some cases
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM‘s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information in softcopy form, the photographs and color illustrations might not be
displayed.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

164 Notices

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Notices 165

166 Application Dependency Discovery Manager: SDK Developer's Guide

IBM®

	Contents
	Tables
	About this information
	Conventions used in this information center
	Terms and definitions

	Chapter 1. SDK Developer's Guide
	Introducing the Software Developer's Kit
	Overview of the Software Developer Kit (SDK)
	Introducing the Common Data Model

	Installing and configuring the Software Developer Kit
	System requirements
	TADDM SDK installation
	Embedded mode
	Standalone mode

	Configuring the TADDM SDK
	Setting environment variables
	Setting configuration properties

	Verifying the SDK installation
	Using the TADDM SDK as a software component
	Required Java .jar files

	SOAP API installation and configuration
	REST API installation and configuration

	Understanding the Common Data Model
	Naming instances
	Naming rules
	TADDM Globally Unique Identifiers

	Class names
	Dependencies between resources

	Simplified Model
	OpenId generic naming rule attribute
	Extended attributes
	Creating extended attributes in Domain Management Portal
	Creating extended attributes in the files
	Deleting extended attributes
	Auto-defining extended attributes for public Java API and bulk load program
	Auto-defining extended attributes for sensors

	Extended instances
	Extending sensor discovery scope with Simplified Model

	TADDM API overview
	Application programming interface overview
	XML schema overview
	JSON format overview
	Model Query Language overview
	Using the Java API
	Before you start using the Java API
	Exploring a sample Java application
	Details about the sample Java application
	Best practices
	Java API Method summary
	Change history
	Discovery management
	Find operations
	Management Software Systems
	MSSObjectLink
	Managing access lists
	Managing collections
	Managing the model
	Managing relationships
	Managing sessions
	Managing transactions
	Managing versions
	Metadata
	Presentation
	Security
	Managing application templates
	Managing grouping patterns

	Using the SOAP API
	Request summary
	Session requests
	Discovery requests
	Managing the model and metadata
	Find requests
	Change history requests
	Managing versions

	Developing applications using the REST API
	REST API overview
	Making REST calls with a Web browser
	Making REST calls in a Java application
	Parsing REST query results
	Debugging REST applications
	Querying model objects using the REST API
	Adding model objects using the REST API
	Updating model objects using the REST API
	Deleting model objects using the REST API
	Maintaining grouping patterns using REST API
	Managing discoveries using the REST API
	REST resource reference
	Model object class
	MQL query service
	Model object
	Model object class metadata
	Model object update service
	Discovery service
	Discovery status
	Discovery profile service
	Discovery profile
	Discovery scope service
	Discovery scope

	Command-line interface API
	Command syntax and parameters
	Changes command
	Delete command
	Discover command
	Load-balanced discover command
	Export command
	Find command
	Import command
	Merge command
	Naming command
	Rediscover command
	Servers command
	Sync command
	Topology command
	Version command

	Developing custom server extensions
	Overview
	Managing extended attributes
	Custom server extensions API
	Prerequisites to using the custom server extensions API
	Function overview
	Capability functions
	Command and process functions
	Common Data Model functions
	DNS and domain functions
	File access functions
	IP and MAC address functions
	Operating system functions
	Path functions
	Utility functions
	Version information functions

	Function reference
	addProcessToPool function
	binToDot function
	bitsMaskToDottedDecimalMask function
	calcNetworkAddress function
	canonicalMac function
	classlessNotation function
	cloneModelObject function
	dotToBin function
	executeCommand function
	executeCommandWithTimeout function
	getApiMinorVersion function
	getApiVersion function
	getAppTarget function
	getArray function
	getComputerSystem function
	getCsTarget function
	getFile function
	getFileWithLengthLimit function
	getLocalDNSLookup function
	getNewOsHandle function
	getOperatingSystem function
	getPidConnectionMap function
	getPidPortList function
	getPidToRuntimeProcessMap function
	getProcessByPid function
	getRemoteDNSLookup function
	getServerProcesses function
	getSimpleCapabilitiesFactory function
	getTADDMVersion function
	init function
	ipInSubnet function
	listDirectory function
	networkToList function
	newModelObject function
	queryRegistry function
	setExtendedAttributes function
	splitArgs function
	unixSlashes function
	validateFqdn function
	validateIp function
	windowsSlashes function

	Sample custom server extension application
	Explanation of the segments in the sample application
	Best practices for developing custom server extension applications

	TADDM database schema and views
	Building block views
	Deprecated views

	Details pane views
	Custom views
	Extended attributes views
	The extattr_views.sh command syntax
	Running the extended attributes view tool

	TADDM Data Dictionary
	TADDM Javadoc information

	Notices
	Trademarks

